zbMATH — the first resource for mathematics

Approximation approach for nonlinear filtering problem with time dependent noises. II: Stable nonlinear filters. (English) Zbl 0910.93078
[For Part I see the review above (Zbl 0910.93076).]
The authors design a stable nonlinear filter which is conditionally optimal in the minimum mean square sense. They use the technique of an inversion of a direct Lyapunov function method which suggests to find a filter in such a way that a Lyapunov function, calculated along the filter trajectory, will change according to some prescribed law. The stable minimum mean square filter can be regarded as an extension of the filter designed in Part I to deal with parameter uncertainties.

93E11 Filtering in stochastic control theory
93C99 Model systems in control theory
Full Text: EuDML Link
[1] R. Albert: Regression and the Moore-Penrose Pseudoinverse. Academic Press, New York 1972. · Zbl 0253.62030
[2] A. Bryson, Ho-Yu-Chi: Applied Optimal Control. Ginn and Co., Waltham, Mass. 1969.
[3] P. D. Crutko: The Lyapunov Functions in Inverse Problems for Dynamical Controlled Systems. Scalar Models. Izv. Akad. Nauk SSSR Tekhn. Kibernet. (1983), No. 4.
[4] P. D. Crutko: The Lyapunov Functions in Inverse Problems for Dynamical Controlled Systems. Multidimensional models. Izv. Akad. Nauk SSSR Tekhn. Kibernet. (1984), No. 4.
[5] P. D. Crutko: Invesion of Direct Lyapunov Method in Control Problems for Dynamical Systems. Izv. Akad. Nauk SSSR Tekhn. Kibernet. (1989), No. 3.
[6] D. P. Dee: Simplification of the Kalman filter for meteorological data assimilation. Quart. J. Roy. Meteorol. Soc. 117 (1991), 365-384.
[7] R. J. Fitzgerald: Divergence of the Kalman filter. IEEE Trans. Automat. Control AC-16 (1971), 736-747.
[8] M. Ghil, P. Malanotte-Rizzoli: Data assimilation in meteorology and oceanography. Adv. in Geophysics 33 (1991), 141-266.
[9] R. E. Griffin, A. P. Sage: Sensitivity analysis of discrete filtering and smoothing algorithms. AIAA Guidance, Control and Flight Dynamics Conf., Pasadena, California 1988, Paper No. 68-824.
[10] H. Heffes: The effect of erroneous models on the Kalman filter response. IEEE Trans. Automat. Control AC-11 (1966), 541-543.
[11] H. S. Hoang P. De Mey, O. Talagrand: A simple algorithm of stochastic approximation type for system parameter and state estimation. 33rd IEEE CDC, Florida 1994, pp. 447-452.
[12] H. S. Hoang R. Baraille O. Talagrand P. De Mey, X. Carton: On the design of a stable adaptive filter. Proc. 35th IEEE CDC, Kobe 1996, Vol. 3, pp. 3543-3544.
[13] H. S. Hoang P. De Mey O. Talagrand, R. Baraille: A new reduced-order adaptive filter for high dimensional systems. Proc. of IFAC Internat. Symp. Adaptive Systems in Control and Signal Processing (Cs. Banyasz, Budapest 1995, pp. 153-158. Also: Automatica 33 (1997), 8, 1475-1498. · Zbl 0889.93055
[14] H. S. Hoang, T. L. Nguyen: Time-stable non-linear filters: Stochastic Lyapunov function approach. Recent Advances in Mathematical Theory of Systems and Control, Networks and Signal Processing (H. Kimura and S. Kodama, Mita Press, Tokyo 1992, pp. 653-658.
[15] S. Hoang L. Nguyen R. Baraille, O. Talagrand: Approximation approach for nonlinear filtering problem with time dependent noises. Part I: Conditionally optimal filter in the minimum mean square sense. Kybernetika 33 (1997), 4, 409-425. · Zbl 0910.93077
[16] H. S. Hoang, O. Talagrand: On regularization approach to parameter estimation and application to design of stable filters. IFAC 12th World Congress, V-4, Sydney 1993, pp. 213-218.
[17] A. H. Jazwinski: Stochastic Processes and Filtering Theory. Academic Press, New York 1970. · Zbl 0203.50101
[18] R. E. Kalman, R. S. Bucy: New results in linear filtering and prediction theory. Trans. ASME, J. Basic Eng., 1961, 83D, pp. 95-108.
[19] R. S. Liptser, A. N. Shiryaev: Statistics of Random Processes. Nauka, Moscow 1974.
[20] L. Ljung, T. Sodestrom: Theory and Practice of Recursive Identification. Academic Press, New York 1983.
[21] R. K. Mehra: On the identification of variances and adaptive Kalman filtering. IEEE Trans. Automat. Control AC-15 (1970), 175-184.
[22] V. I. Meleshko, S. S. Sekt: Regularized estimates in problems with singular variance matrices. Automat. Remote Control 3 (1988), 293-297. · Zbl 0657.93061
[23] T. L. Nguyen, H. S. Hoang: On solution of ill-posed optimal linear filtering problem with correlated noises. Automat. Remote Control 4 (1983), 1, 453-466. · Zbl 0536.93054
[24] V. S. Pugachev: Recursive estimation of variables and characteristics in the stochastic systems described by the difference equations. Dokl. Acad. Nauk USSR 243 (1976), 5.
[25] S. Safonov, M. Athans: On stability theory. Proc. IEEE CDC, San Diego 1979. · Zbl 0428.93050
[26] G. Sewell: The numerical Solution of Ordinary and Partial Differential Equations. Academic Press, New York 1988. · Zbl 0657.65003
[27] L. M. Silverman: Discrete Riccati equations: Algorithms, asymptotic properties and system theory interpretation. Filtering and Stochastic Control in Dynamical Systems (C. T. Leondes, Mir, Moscow 1980.
[28] H. W. Sorenson: On the error behavior in linear minimum variance estimation problems. IEEE Trans. Automat. Control AC-12 (1967), 557-562.
[29] O. Talagrand, P. Courtier: Variational assimilation of meteorological observations with the Adjoint vorticity equations. I. Theory. Quart. J. Roy. Meteorol. Soc. 113 (1987), 1311-1328.
[30] J. Verron: Nudging satellite altimetry data into quasi-geostrophic models. J. Geophys. Research 97 (1992), 7479-7491.
[31] V. I. Zubov: On theory of analytic design of regulators. Automat. Remote Control (1963), No. 8.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.