zbMATH — the first resource for mathematics

On the Galois structure of circular units in \(\mathbb{Z}_p\)-extensions. (Sur la structure galoisienne des unités circulaires dans les \(\mathbb{Z}_p\)-extensions.) (French) Zbl 0911.11051
Let \(K\) be a real abelian field and \(p\) a rational prime which does not ramify in \(K\). The aim of this paper is to study the Galois behaviour of Sinott’s groups of circular units \(C_s(K_n)\) in the cyclotomic \(\mathbb{Z}_p\)-extension \(K_\infty= \bigcup_{n\geq 0}K_n\). For this purpose, the author introduces a certain submodule \(D_n(K)\) of \(p\)-units of \(K_n\) which contains only universal norms (in \(K_\infty/K_n\)) and whose intersection \(\widehat{D}_n(K)\) with the units of \(K_n\) is “close to” \(C_s(K_n)\). For instance, \(C_s(K)= \{\pm 1\}\times \widehat{D}_0(K)\), \(C_s(K_n)= C_s(K)\). \(\widehat{D}_n(K)\) for \(n>0\), and \(\varprojlim C_s(K_n)\otimes \mathbb{Z}_p= \varprojlim \widehat{D}_n(K)\otimes \mathbb{Z}_p\).
The character of \(D_n(K) \otimes \mathbb{Q}\) is computed. Under certain restrictive hypotheses relative to norms inside group algebras of cyclotomic fields associated with the prime factors of the conductor of \(K\), the author also determines the Galois module structure of \(D_n(K)\) and, as a consequence, the cohomology of \(C_s(K_n)\) in the cyclotomic tower.

11R23 Iwasawa theory
11R18 Cyclotomic extensions
11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers
11R34 Galois cohomology
Full Text: DOI
[1] Bass, H., Generators and relations for cyclotomic units, Nagoya math. J, 27, 401-407, (1966) · Zbl 0144.29403
[2] C. Batut, D. Bernardi, H. Cohen, M. Cohen, User’s guide to PARI-GP, ftp:megrez.math.u-bordeaux.fr, 1995
[3] Brumer, A., On the units of algebraic number fields, Mathematika, 14, 121-124, (1967) · Zbl 0171.01105
[4] Ennola, V., On relations between cyclotomic units, J. number theory, 4, 236-247, (1972) · Zbl 0236.12005
[5] Fröklich, A., Units in real abelian fields, J. reine angew. math., 429, 191-217, (1992) · Zbl 0823.11066
[6] Gold, R.; Kim, J.M., Bases for cyclotomic units, Compositio math., 71, 13-28, (1989) · Zbl 0687.12003
[7] Greither, C., Über relativ-invariante kreiseinheiten und Stickelberger-elemente, Manuscripta math., 80, 27-43, (1993) · Zbl 0801.11044
[8] Greither, C., Sur LES normes universelles dans LES \(Z\)_p-extensions, J. théor. nombres Bordeaux, 6, 205-220, (1994) · Zbl 0833.11051
[9] Kim, J.M., Cohomology groups of cyclotomic units, J. algebra, 152, 514-519, (1992) · Zbl 0776.11066
[10] Kučera, R., On the Stickelberger ideal and circular units of a compositum of quadratic fields, J. number theory, 56, 139-166, (1996) · Zbl 0840.11044
[11] Kučera, R.; Nekovář, J., Cyclotomic units in \(Z\)_p-extensions, J. algebra, 171, 457-472, (1995) · Zbl 0824.11071
[12] Serre, J.P., Corps locaux, (1968), Hermann
[13] Sinnott, W., On the Stickelberger ideal and the circular units of an abelian field, Invent. math., 62, 181-234, (1981) · Zbl 0465.12001
[14] Solomon, D., On a construction of p-units in abelian fields, Invent. math., 109, 329-350, (1992) · Zbl 0772.11043
[15] Solomon, D., Galois relations for cyclotomic numbers andp-units, J. number theory, 46, 158-178, (1994) · Zbl 0807.11054
[16] Washington, L., Introduction to cyclotomic fields, (1982), Springer-Verlag · Zbl 0484.12001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.