zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A criterion for stability of matrices. (English) Zbl 0911.15007
The authors derive a necessary and sufficient condition for the stability of an $n\times n$ matrix with real entries using a simple spectral property of compound matrices. This result offers an alternative to the well-known Routh-Hurwitz conditions. As an application and demonstration of the effectiveness of these criteria, the asymptotic stability of a unique endemic equilibrium of an epidemic model of SEIR type with varying total population is proved. It is also shown that the verification of the Routh-Hurwitz conditions for this problem presents substantial technical difficulties.

15A42Inequalities involving eigenvalues and eigenvectors
Full Text: DOI
[1] Barabanov, N. Z.: On a problem of Kalman. Siberian math. J. 29, 333-341 (1988) · Zbl 0713.93044
[2] J. Bernet, J. Llibre, Counterexamples to Kalman and Markus--Yamabe conjectures in dimensions larger than 3, 1994
[3] Busenberg, S.; Den Driessche, P. Van: Analysis of a disease transmission model in a population with varying size. J. math. Biol. 28, 257-271 (1990) · Zbl 0725.92021
[4] A. Cima, A. van den Essen, A. Gasull, E. Hubber, F. Mañosas, A polynomial counterexample to the Markus--Yamabe conjecture, 1995
[5] Coppel, W. A.: Stability and asymptotic behavior of differential equations. (1965) · Zbl 0154.09301
[6] Dru.Zkowski, L. M.; Tutaj, H. K.: Differential conditions to verify the Jacobian conjecture. Ann. polon. Math. 59, 253-263 (1992) · Zbl 0778.34038
[7] Feßler, R.: A proof of the two-dimensional markus--yamabe stability conjecture and a generalization. Ann. polon. Math. 62, 45-47 (1995) · Zbl 0835.34052
[8] Fiedler, M.: Additive compound matrices and inequality for eigenvalues of stochastic matrices. Czech math. J. 99, 392-402 (1974) · Zbl 0345.15013
[9] Glutsyuk, A. A.: A complete solution of the Jacobian problem for vector fields on the plane. Russian math. Surv. 49, 185-186 (1994) · Zbl 0828.34041
[10] Gutierrez, C.: A solution of the bidimensional global asymptotic stability conjecture. Ann. inst. Henri Poincaré 12, 627-671 (1995) · Zbl 0837.34057
[11] Hale, J. K.: Ordinary differential equations. (1969) · Zbl 0186.40901
[12] Hartman, P.: On stability in the large for systems of ordinary differential equations. Canad. J. Math. 13, 480-492 (1961) · Zbl 0103.05901
[13] Hartman, P.; Olech, C.: On global asymptotic stability of solutions of differential equations. Trans. amer. Math. soc. 104, 154-178 (1962) · Zbl 0109.06003
[14] M. Y. Li, Global dynamics of an epidemiological model of SEIR type with varying population size, 1998
[15] Li, M. Y.: Bendixson’s criterion for autonomous systems with an invariant linear subspace. Rocky mountain J. Math. 25, 351-363 (1995) · Zbl 0841.34029
[16] Li, M. Y.: Dulac criteria for autonomous systems having an invariant affine manifold. J. math. Anal. appl. 199, 374-390 (1996) · Zbl 0851.34031
[17] Li, M. Y.; Muldowney, J. S.: On R. A. Smith’s autonomous convergence theorem. Rocky mountain J. Math. 25, 365-379 (1995) · Zbl 0841.34052
[18] Markus, L.; Yamabe, H.: Global stability criteria for differential equations. Osaka J. Math. 12, 305-317 (1960) · Zbl 0096.28802
[19] Muldowney, J. S.: Compound matrices and ordinary differential equations. Rocky mountain J. Math. 20, 857-872 (1990) · Zbl 0725.34049
[20] Smith, R. A.: Some applications of Hausdorff dimension inequalities for ordinary differential equations. Proc. roy. Soc. Edinburgh sect. A 104A, 235-259 (1986) · Zbl 0622.34040
[21] Sturm, C.: Autres démonstrations du même thèoréme. J. math. Pures appl. (9) 1, 290-308 (1836)