×

zbMATH — the first resource for mathematics

On equations of KP-type. (English) Zbl 0911.35103
This paper discusses the local Cauchy problem for the generalized Kadomtsev-Petviashvili equation \[ \bigl(\partial_tu-iP(D)u+a(u)\partial_xu\bigr)_x+\gamma\partial^2_yu=0 \] in periodic and nonperiodic settings.

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
35B10 Periodic solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kadomtsev, Soviet Phys. Dokl. 15 pp 539– (1970)
[2] Kato, J. Fac. Sci. Univ. Tokyo 17 pp 241– (1970)
[3] DOI: 10.1007/BF02567093 · Zbl 0755.35116 · doi:10.1007/BF02567093
[4] DOI: 10.1007/BFb0084901 · doi:10.1007/BFb0084901
[5] Faminskii, Sibirsk. Mat. Zh. 33 pp 160– (1992)
[6] DOI: 10.1007/BF01896259 · Zbl 0787.35086 · doi:10.1007/BF01896259
[7] DOI: 10.1098/rsta.1975.0035 · Zbl 0306.35027 · doi:10.1098/rsta.1975.0035
[8] Ablowitz, Stud. Appl. Math. 85 pp 195– (1991) · Zbl 0742.35051 · doi:10.1002/sapm1991853195
[9] DOI: 10.1007/BF01210703 · Zbl 0633.35070 · doi:10.1007/BF01210703
[10] Ukai, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 pp 108– (1989)
[11] Tom, Contemp. Math. 200 pp 193– (1996) · doi:10.1090/conm/200/02515
[12] DOI: 10.1512/iumj.1993.42.42047 · Zbl 0814.35119 · doi:10.1512/iumj.1993.42.42047
[13] DOI: 10.1016/0022-247X(91)90277-7 · Zbl 0737.35112 · doi:10.1016/0022-247X(91)90277-7
[14] Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations (1983) · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[15] Kato, Stud. Appl. Math. Suppl. Stud. 8 pp 93– (1983)
[16] DOI: 10.1007/BF01647967 · Zbl 0415.35070 · doi:10.1007/BF01647967
[17] Kato, Lecture Notes in Mathematics 448 pp 25– (1975)
[18] DOI: 10.2969/jmsj/02540648 · Zbl 0262.34048 · doi:10.2969/jmsj/02540648
[19] DOI: 10.1006/jmaa.1995.1426 · Zbl 0844.35107 · doi:10.1006/jmaa.1995.1426
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.