The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. (English) Zbl 0911.65107

The authors are interested in the Dirichlet problem for second-order elliptic equations in non-convex three-dimensional polygonal domains. The equations have constant coefficients. Such problems can exhibit singularities along edges and at corners. Unless properly treated, these singularities will diminish the rate of convergence of finite element solutions. In the current paper, the authors devise a mesh refinement strategy based on singularity exponents that results in optimal convergence rates when used with piecewise linear shape functions. The mesh refinement is anisotropic in the sense that the aspect ratio of the mesh is not necessarily bounded. The authors present some new local interpolation error estimates employing anisotropic weighting functions to support their convergence results.
The first-named author and his colleagues have investigated similar problems before. The present paper is the first to employ the anisotropic mesh refinement strategy for problems with both edge and corner singularities in arbitrary polygonal domains. A numerical example shows that optimal convergence can be achieved in practice and is a substantial improvement over uniform mesh refinement for a problem with a so-called Fichera corner.


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
Full Text: DOI


[1] Apel, Computing 47 pp 277– (1992)
[2] Apel, SIAM J. Numer. Anal. 31 pp 695– (1994)
[3] and , ’Local inequalities for anisotropic finite elements and their application to convection-diffusion problems’, preprint SPC94_26, TU Chemnitz-Zwickau, 1994.
[4] and , ’Realization and comparison of various mesh refinement strategies near edges’, preprint SPC94_15, TU Chemnitz-Zwickau, 1994.
[5] and , ’Elliptic problems in domains with edges: anisotropic regularity and anisotropic finite element meshes’, in Partial Differential Equations and Functional Analysis (In Memory of Pierre Grisvard), , , and , eds., pp. 18-34. Birkhäuser, Boston, 1996. Shortened version of preprint SPC94_16, TU Chemnitz-Zwickau, 1994.
[6] Apel, Math. Meth. Appl. Sci. 19 pp 63– (1996)
[7] Babuška, Numer. Math. 33 pp 447– (1979)
[8] Babuška, SIAM J. Numer. Anal. 31 pp 1265– (1994)
[9] Beagles, Numer. Methods Partial Differ. Equations 2 pp 113– (1986)
[10] Beagles, Math. Meth. Appl. Sci. 11 pp 215– (1989)
[11] and , ’A new nonconforming approach to domain decomposition: The mortar element method’, in Collége de France Seminar, XI, ( and , eds., ), pp. 13-51. Pitman, London 1994. · Zbl 0797.65094
[12] Blum, Computing 28 pp 53– (1982)
[13] Bourlard, SIAM J. Numer. Anal. 29 pp 136– (1992)
[14] ’Problème de Dirichlet sur un polyèdre de \(\mathbb{R}\)3 pour un opérateur fortement elliptique’, Séminaire d’E. D. P.5, Nantes, 1982/83.
[15] ’Elliptic Boundary value Problems on Corner domains’, Lecture Notes in Mathematics, vol. 1341, Springer, Berlin, 1988. · Zbl 0668.35001
[16] ’Elliptic Problems in Nonsmooth Domains’. Pitman, Boston, London, Melbourne, 1985. · Zbl 0695.35060
[17] Grisvard, J. Math. Pures Appl. 74 pp 3– (1995)
[18] Kondrat’ev, Trudy Moskov. Mat. Obshch. 16 pp 209– (1967)
[19] and , Some Applications of Weighted Sobolev Spaces, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1987.
[20] and , ’Computation of singular solutions in elliptic problems and elasticity, ’ Masson, Paris, 1987.
[21] and , ’Finite element method for elliptic problems with edge corners’, J. Comput. Appl. Math. submitted.
[22] Lubuma, J. Comput. Appl. Math. 61 pp 13– (1995)
[23] Maz’ya, Trudy Moskow. Mat. Obshch. 37 pp 49– (1978)
[24] Trans. Moskow Math. Soc. 1 pp 49– (1980)
[25] Maz’ya, Math. Nachr. 138 pp 27– (1988)
[26] Maz’ya, Ann. Global Anal. Geom. 9 pp 253– (1991)
[27] and , ’Variational-difference methods for the solution of elliptic equations’, Izd. Akad. Nauk Armyanskoi SSR, Jerevan, (1979) (in Russian).
[28] ’Randwertprobleme der Elastizitätstheorie für Polyeder -Singularitäten und Approximationen mit Randelementmethoden’, Ph. D. Thesis, TH Darmstadt, 1989. · Zbl 0709.73009
[29] ’Résolution numérique de problèmes elliptiques dans des domaines avec coins’, Ph. D. Thesis, Université de Rennes (France), 1978.
[30] Schmitz, Numer. Methods Partial Differ. Equations 9 pp 323– (1993)
[31] and , An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1973.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.