zbMATH — the first resource for mathematics

Maximality of Galois actions for compatible systems. (English) Zbl 0912.11026
From the introduction: The maximality of Galois groups associated with cohomology of varieties was first discussed by Serre. He proved that if \(K\) is a number field and \(E/K\) an elliptic curve not potentially of CM-type, then for all \(\ell \gg 0\), the homomorphism \(\text{Gal} (\overline K/K)\to \text{GL} (T_\ell (E))\), giving the Galois action on the Tate module of \(E\), is surjective. Here the author would like to generalize this to the case of a compatible system of \(n\)-dimensional representations \[ \rho_\ell: \text{Gal} (\overline K/K) \to\text{GL}_n (\mathbb{Q}_\ell), \] in the sense of Serre. Of course, the image of \(\rho_\ell\) is not generally Zariski-dense in \(\text{GL}_n (\mathbb{Q}_\ell)\), so the maximality condition must be formulated relative to the Zariski closure, \(G_\ell\), of \(\rho_\ell (\text{Gal} (\overline K/K))\). One might hope that the image of \(\rho_\ell\) is a maximal compact subgroup of \(G_\ell (\mathbb{Q}_\ell)\), but this is too optimistic: the center causes problems, and we do not even know a priori that \(G_\ell\) is reductive.
To formulate a maximality conjecture that avoids such problems, we introduce maps \[ G^0_\ell @>\sigma>> G_\ell^{\text{ad}} @>>\tau> G_\ell^{\text{sc}}, \] where \(G^0_\ell\) denotes the identity component of \(G_\ell\), \(G_\ell^{\text{ad} }\) the quotient of \(G^0_\ell\) by its radical, and \(G_\ell^{\text{sc}}\) the simply connected cover of \(G_\ell^{\text{ad}}\). We expect that for \(\ell \gg 0\), \[ \tau^{-1} \Bigl(\sigma \biggl( \rho_\ell\bigl( \text{Gal} (\overline K/K) \bigr) \cap G^0_\ell (\mathbb{Q}_\ell) \biggr) \Bigr) \tag{1} \] should be a hyperspecial maximal compact subgroup of \(G_\ell^{\text{sc}}\). This technical condition implies, in particular, that with respect to Haar measure, the group (1) is of maximal volume.
The main result of this paper is a weaker claim, namely that (1) is a hyperspecial maximal compact for a set of primes \(\ell\) of Dirichlet density 1. The argument is valid not only for systems of cohomology representations, but for all compatible systems of \(\ell\)-adic Galois representations.
The proof makes essential use of a group-theoretical result that may be of some independent interest. Given a connected semisimple algebraic group \(G/ \mathbb{Q}\), we can extend \(G\) to a smooth group scheme over \(\mathbb{Z} [1/N]\) for \(N\) sufficiently divisible. We consider the family of finite groups \(G(\mathbb{F}_\ell)\) for \(\ell \gg 0\). The theorem says that for \(\ell\gg 0\), every maximal proper subgroup of the abstract group \(G(\mathbb{F}_\ell)\) is actually algebraic in a suitable sense. The proof depends on the classification of finite simple groups.
The two other main ingredients in the proof of the main theorem are the Bruhat-Tits theory of \(p\)-adic groups, and the theory of algebraic monodromy of compatible systems of Galois representations developed earlier.

11G09 Drinfel’d modules; higher-dimensional motives, etc.
11G10 Abelian varieties of dimension \(> 1\)
11S37 Langlands-Weil conjectures, nonabelian class field theory
20G25 Linear algebraic groups over local fields and their integers
Full Text: DOI
[1] A. Borel and J.-P. Serre, Théorèmes de finitude en cohomologie galoisienne , Comment. Math. Helv. 39 (1964), 111-164. · Zbl 0143.05901 · doi:10.1007/BF02566948 · eudml:139285
[2] F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée , Inst. Hautes Études Sci. Publ. Math. (1984), no. 60, 197-376. · Zbl 0597.14041 · doi:10.1007/BF02700560 · numdam:PMIHES_1984__60__5_0 · eudml:104001
[3] R. Carter, Simple groups of Lie type , John Wiley & Sons, London-New York-Sydney, 1972. · Zbl 0248.20015
[4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups , Oxford University Press, Eynsham, 1985. · Zbl 0568.20001
[5] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras , Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. · Zbl 0131.25601
[6] M. Demazure and A. Grothendieck, Schémas en groupes. I: Propriétés générales des schémas en groupes , Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin, 1970. · Zbl 0207.51401 · doi:10.1007/BFb0058993
[7] 1 A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I , Inst. Hautes Études Sci. Publ. Math. (1964), no. 20, 259. · Zbl 0136.15901 · doi:10.1007/BF02684747 · numdam:PMIHES_1964__20__5_0
[8] 2 A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II , Inst. Hautes Études Sci. Publ. Math. (1965), no. 24, 231. · Zbl 0135.39701 · numdam:PMIHES_1965__24__5_0 · eudml:103851
[9] 3 A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III , Inst. Hautes Études Sci. Publ. Math. (1966), no. 28, 255. · Zbl 0144.19904 · doi:10.1007/BF02684343 · numdam:PMIHES_1966__28__5_0 · eudml:103860
[10] 4 A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV , Inst. Hautes Études Sci. Publ. Math. (1967), no. 32, 361. · Zbl 0153.22301 · numdam:PMIHES_1967__32__5_0 · eudml:103873
[11] G. Harder, Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Gruppen , Jber. Deutsch. Math.-Verein. 70 (1967/1968), no. Heft 4, Abt. 1, 182-216. · Zbl 0194.05701 · eudml:146570
[12] J. Humphreys, Ordinary and modular representations of Chevalley groups , Springer-Verlag, Berlin, 1976. · Zbl 0341.20037 · doi:10.1007/BFb0079105
[13] B. Huppert, Endliche Gruppen. I , Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin, 1967. · Zbl 0217.07201
[14] J. C. Jantzen, Low-dimensional representations of reductive groups are semisimple , · Zbl 0877.20029
[15] M. Larsen, Two-dimensional systems of Galois representations , \(p\)-adic methods in number theory and algebraic geometry, Contemp. Math., vol. 133, Amer. Math. Soc., Providence, RI, 1992, pp. 163-169. · Zbl 0797.11088
[16] M. Larsen, On the semisimplicity of low-dimensional representations of semisimple groups in characteristic \(p\) , J. Algebra 173 (1995), no. 2, 219-236. · Zbl 0834.20045 · doi:10.1006/jabr.1995.1085
[17] M. Larsen and R. Pink, Determining representations from invariant dimensions , Invent. Math. 102 (1990), no. 2, 377-398. · Zbl 0687.22004 · doi:10.1007/BF01233432 · eudml:143839
[18] M. Larsen and R. Pink, On \(l\)-independence of algebraic monodromy groups in compatible systems of representations , Invent. Math. 107 (1992), no. 3, 603-636. · Zbl 0778.11036 · doi:10.1007/BF01231904 · eudml:143980
[19] C. R. Matthews, L. N. Vaserstein, and B. Weisfeiler, Congruence properties of Zariski-dense subgroups. I , Proc. London Math. Soc. (3) 48 (1984), no. 3, 514-532. · Zbl 0551.20029 · doi:10.1112/plms/s3-48.3.514
[20] M. V. Nori, On subgroups of \(\mathrm GL_ n(\mathbf F_ p)\) , Invent. Math. 88 (1987), no. 2, 257-275. · Zbl 0632.20030 · doi:10.1007/BF01388909 · eudml:143454
[21] J.-P. Serre, Abelian \(l\)-adic representations and elliptic curves , McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute, W. A. Benjamin, Inc., New York-Amsterdam, 1968. · Zbl 0186.25701
[22] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques , Invent. Math. 15 (1972), no. 4, 259-331. · Zbl 0235.14012 · doi:10.1007/BF01405086 · eudml:142133
[23] J.-P. Serre, Jan. 29 1981, Letter to K. Ribet.
[24] T. A. Springer, Weyl’s character formula for algebraic groups , Invent. Math. 5 (1968), 85-105. · Zbl 0159.31802 · doi:10.1007/BF01425541 · eudml:141906
[25] R. Steinberg, Lectures on Chevalley groups , Yale University, New Haven, Conn., 1968. · Zbl 0307.22001
[26] R. Steinberg, Representations of algebraic groups , Nagoya Math. J. 22 (1963), 33-56. · Zbl 0271.20019
[27] R. Steinberg, Endomorphisms of linear algebraic groups , Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. · Zbl 0164.02902
[28] H. P. F. Swinnerton-Dyer, On \(l\)-adic representations and congruences for coefficients of modular forms , Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), Springer, Berlin, 1973, 1-55. Lecture Notes in Math., Vol. 350. · Zbl 0267.10032 · doi:10.1007/978-3-540-37802-0_1
[29] D. A. Testerman, Irreducible subgroups of exceptional algebraic groups , Mem. Amer. Math. Soc. 75 (1988), no. 390, iv+190. · Zbl 0662.20037
[30] J. Tits, Reductive groups over local fields , Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29-69. · Zbl 0415.20035
[31] J. Tits, Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque , J. Reine Angew. Math. 247 (1971), 196-220. · Zbl 0227.20015 · doi:10.1515/crll.1971.247.196 · crelle:GDZPPN002185725 · eudml:151104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.