zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multiple integral average conditions for oscillation of delay differential equations. (English) Zbl 0912.34061
The author considers delay differential equations of the form $$x'(t)= \sum^n_{i=1} g_i(t)x(t- T_i(t))= 0,\tag 1$$ with $g_i(t)$, $T_i(t)\in C([t_0,\infty), [0,\infty))$, $t- T(t)\to\infty$ and $t- T_i(t)\to +\infty$ as $t\to\infty$, $i= 1,2,\dots,n$. A method based on certain iterative processes is used to obtain some multiple integral average conditions for the oscillation of (1).

34K11Oscillation theory of functional-differential equations
34C15Nonlinear oscillations, coupled oscillators (ODE)
Full Text: DOI
[1] Ladas, G.; Stavroulakis, I. P.: Oscillations caused by several retard and advanced arguments. J. differential equations 44, 143-152 (1982) · Zbl 0452.34058
[2] Arino, O.; Györi, I.; Jawhari, A.: Oscillation criteria in delay equations. J. differential equations 53, 115-123 (1984) · Zbl 0547.34060
[3] Hunt, B. R.; Yorke, J. A.: When all solutions ofxtnjqj(txtTj(t. J. differential equations 53, 139-145 (1984) · Zbl 0571.34057
[4] Ladde, G. S.; Lakshmikantham, V.; Zhang, B. G.: Oscillation theory of differential equations with deviating arguments. (1987) · Zbl 0832.34071
[5] Arino, O.; Györi, I.: Necessary and sufficient condition for oscillation of neutral differential system with several delays. J. differential equations 81, 98-105 (1989) · Zbl 0691.34054
[6] Cheng, Y.: Oscillation in nonautonomous scalar differential equations with deviating arguments. Proc. amer. Math soc. 110, 711-719 (1990) · Zbl 0736.34060
[7] Chen, S.; Huang, Q.: On a conjecture of hunt and Yorke. J. math. Anal. appl. 159, 469-484 (1991) · Zbl 0746.34041
[8] Kwong, M. K.: Oscillation of first order delay equations. J. math. Anal. appl. 156, 286-374 (1991) · Zbl 0727.34064
[9] Erbe, L. H.; Kong, Q.: Oscillation and nonoscillation properties of neutral differential equations. Canad. J. Math. 46, 284-297 (1994) · Zbl 0797.34072
[10] Erbe, L. H.; Kong, Qingkai; Zhang, B. G.: Oscillation theory for functional differential equations. (1995) · Zbl 0821.34067
[11] Elbert, A.; Stavroulakis, I. P.: Oscillation and oscillation criteria for delay differential equations. Proc. amer. Math. soc. 123, 1503-1510 (1995) · Zbl 0828.34057
[12] Li, B.: Oscillations of delay differential equations with variable coefficients. J. math. Anal. appl. 192, 312-321 (1995) · Zbl 0829.34060
[13] Li, B.; Kuang, Y.: Sharp conditions for oscillation in some nonlinear nonautonomous delay differential equations. Nonlinear anal. 29, 1265-1276 (1997) · Zbl 0887.34068
[14] Li, B.: Oscillation of first order delay differential equations. Proc. amer. Math. soc. 124, 3729-3737 (1996) · Zbl 0865.34057