On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. (English) Zbl 0912.45011

Author’s summary: The paper deals with the spatially homogeneous Boltzmann equation when grazing collisions are involved. We study in a unified setting the Boltzmann equation without cut-off, the Fokker-Planck-Landau equation, and the asymptotics of grazing collisions for a very broad class of potentials; in particular, we are able to derive rigorously the Landau equation for the Coulomb potential. In order to do so, we introduce a new definition of weak solutions, based on entropy production.
Reviewer: V.Yurko (Saratov)


45K05 Integro-partial differential equations
45M05 Asymptotics of solutions to integral equations
82C40 Kinetic theory of gases in time-dependent statistical mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
Full Text: DOI


[1] L. Arkeryd: On the Boltzmann equation. Arch. Rational Mech. Anal., 45: 1-34, 1972. · Zbl 0245.76059
[2] L. Arkeryd: Intermolecular forces of infinite range and the Boltzmann equation. Arch. Rational Mech. Anal., 77: 11-21, 1981. · Zbl 0547.76085
[3] L. Arkeryd: Asymptotic behaviour of the Boltzmann equation with infinite range forces. Comm. Math. Phys., 86: 475-484, 1982. · Zbl 0514.35075
[4] A. A. Arsen’ev & O.E. Buryak: On the connection between a solution of the Boltzmann equation and a solution of the Landau-Fokker-Planck equation. Math. USSR Sbornik, 69: 465-478, 1991. · Zbl 0724.35090
[5] R. Balescu: Equilibrium and nonequilibrium statistical mechanics. Wiley, 1975. · Zbl 0984.82500
[6] N. N. Bogoliubov: Problems of dynamical theory in statistical physics, in Studies in Statistical Mechanics, J. de Boer & G.E. Uhlenbeck, eds. Interscience, New York, 1962.
[7] C. Buet, S. Cordier, P. Degond & M. Lemou: Fast algorithms for numerical conservative and entropy approximations of the Fokker-Planck equation in 3D velocity space. J. Comput. Phys., 133: 310-322, 1997. · Zbl 0880.65112
[8] R. Caflisch: The Boltzmann equation with a soft potential. Commun. Math. Phys., 74: 71-109, 1980. · Zbl 0434.76065
[9] T. Carleman: Problèmes mathématiques dans la théorie cinétiquedes gaz. Almqvist & Wiksell, 1957. · Zbl 0077.23401
[10] C. Cercignani: The Boltzmann equation and its applications. Springer, New York, 1988. · Zbl 0646.76001
[11] C. Cercignani, R. Illner, & M. Pulvirenti: The mathematical theory of dilute gases. Springer, New York, 1994. · Zbl 0813.76001
[12] Degond, P.; Lucquin-Desreux, B., No article title, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case, 2, 167-182 (1992) · Zbl 0755.35091
[13] L. Desvillettes: On asymptotics of the Boltzmann equation when the collisions become grazing. Transp. Theory Stat. Phys., 21: 259-276, 1992. · Zbl 0769.76059
[14] L. Desvillettes: Some applications of the method of moments for the homogeneous Boltzmann equation. Arch. Rational Mech. Anal., 123: 387-395, 1993. · Zbl 0784.76081
[15] L. Desvillettes: About the regularizing properties of the non-cut-off Kac equation. Comm. Math. Phys., 168: 417-440, 1995. · Zbl 0827.76081
[16] L. Desvillettes & C. Villani: On the spatially homogeneous Landau equation with hard potentials. Work in preparation. · Zbl 0951.35130
[17] R. J. Di Perna & P. L. Lions: On the Fokker-Planck-Boltzmann equation. Commun. Math. Phys., 120: 1-23, 1988. · Zbl 0671.35068
[18] R. J. Di Perna & P. L. Lions: On the Cauchy problem for the Boltzmann equation: global existence and weak stability. Ann. Math., 130: 312-366, 1989. · Zbl 0698.45010
[19] T. Elmroth: Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range. Arch. Rational Mech. Anal., 82: 1-12, 1983. · Zbl 0503.76091
[20] T. Goudon: Generalized invariant sets for the Boltzmann equation. Math. Mod. Meth. Appl. Sci., 7: 457-476, 1997. · Zbl 0878.35090
[21] T. Goudon: On the Boltzmann equation and its relations to the Landau-Fokker-Planck equation: influence of grazing collisions. C. R. Acad. Sci. Paris, 324, Série I: 265-270, 1997. · Zbl 0882.76079
[22] T. Gustafsson: Global Lp-properties for the spatially homogeneous Boltzmann equation. Arch. Rational Mech. Anal., 103: 1-38, 1988. · Zbl 0656.76067
[23] E. M. Lifchitz & L.P. Pitaevskii: Physical Kinetics — Course in theoretical physics, volume 10. Pergamon, Oxford, 1981. · Zbl 0503.76091
[24] P. L. Lions: On Boltzmann and Landau equations. Phil. Trans. R. Soc. Lond., A346: 191-204, 1994. · Zbl 0809.35137
[25] J. C. Maxwell: On the dynamical theory of gases. Phil. Trans. R. Soc. Lond., 157: 49-88, 1866.
[26] S. Mischler & B. Wennberg: On the spatially homogeneous Boltzmann equation. To appear in Ann. IHP. · Zbl 0946.35075
[27] A. Ja. Povzner: The Boltzmann equation in the kinetic theory of gases. Amer. Math. Soc. Trans., 47 (Ser. 2) 193-214, 1965. · Zbl 0188.21204
[28] A. Proutière: New results of regularization for weak solutions of Boltzmann equation, preprint, 1996. · Zbl 0547.76085
[29] I. P. Shkarofsky, T. W. Johnston & M.P. Bachynski: The particle kinetics of plasmas. Addison-Wesley, Reading, 1966.
[30] C. Truesdell & R.G. Muncaster: Fundamentals of Maxwell’s kinetic theory of a simple monatomic gas. Academic Press, New York, 1980.
[31] S. Ukai & K. Asano: On the Cauchy problem of the Boltzmann equation with a soft potential. Publ. Res. Math. Sci., 18: 477-519, 1982. · Zbl 0538.45011
[32] C. Villani: On the Landau equation: weak stability, global existence. Adv. Diff. Eq., 1: 793-816, 1996. · Zbl 0856.35020
[33] C. Villani: On the spatially homogeneous Landau equation for Maxwellian molecules, to appear in Math. Mod. Meth. Appl. Sci. · Zbl 0957.82029
[34] B. Wennberg: On moments and uniqueness for solutions to the space homogeneous Boltzmann equation. Transp. Theory. Stat. Phys., 24: 533-539, 1994. · Zbl 0812.76080
[35] H. E. Wilhelm: Momentum and energy exchange between beams of particles interacting by Yukawa-type potentials. Phys. Rev., 187: 382-392, 1969.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.