Park, Sehie; Kang, Byung Gai Generalized variational inequalities and fixed point theorems. (English) Zbl 0912.49006 Nonlinear Anal., Theory Methods Appl. 31, No. 1-2, 207-216 (1998). In this paper, the authors deduce, from a well-known fixed point theorem of Idzik, new variational inequalities for generalized upper hemicontinuous multimaps. Consequently, all of the results of W. K. Kim and K.-K. Tan [Bull. Aust. Math. Soc. 46, No. 1, 139-148 (1992; Zbl 0747.47037)] and X. Ding [J. Suchuan Norm. Univ. 17, No. 6, 10-16 (1994; MR 96b:47064)] and some others are substantially extended and improved. Moreover, they establish new fixed point theorems on generalized upper hemicontinuous multimaps including a large number of historically well-known extensions of the Brouwer or Kakutani theorems. The fixed point theorems established by the authors are useful tools in nonlinear analysis; they have many interesting applications. Reviewer: L.-J.Lin (Changhua) Cited in 3 Documents MSC: 49J40 Variational inequalities 47H10 Fixed-point theorems 47J20 Variational and other types of inequalities involving nonlinear operators (general) 58E35 Variational inequalities (global problems) in infinite-dimensional spaces Keywords:closed map; compact map; convexly totally bounded; fixed point theorem of Idzik; variational inequalities; upper hemicontinuous multimaps Citations:Zbl 0747.47037 PDF BibTeX XML Cite \textit{S. Park} and \textit{B. G. Kang}, Nonlinear Anal., Theory Methods Appl. 31, No. 1--2, 207--216 (1998; Zbl 0912.49006) Full Text: DOI References: [1] Idzik, A., Almost fixed point theorems, (Proc. Amer. Math. Soc., 104 (1988)), 779-784 · Zbl 0691.47046 [2] Kim, W. K.; Tan, K.-K., A variational inequality in non-compact sets and its applications, Bull. Austral. Math. Soc., 42, 139-148 (1992) · Zbl 0747.47037 [3] Ding, X.-P., A class of generalized variational inequalities and its applications, J. of Sichuan Norm. Univ. (Nat. Sci), 17, 10-16 (1994) [4] Hadžić, O., Fixed Point Theory in Topological Vector Spaces (1984), University of Novi Sad: University of Novi Sad Novi Sad · Zbl 0576.47030 [5] Weber, H., Compact convex sets in non-locally convex linear spaces, Schauder-Tychonoff fixed point theorem, (Topology, Measures, and Fractals (Warnemüde, 1991), Math. Res., Vol. 66 (1992), Academie-Verlag: Academie-Verlag Berlin), 37-40 · Zbl 0760.47030 [6] Lassonde, M., Réduction du cas multivoque au cas univoque dans les problèmes de coïncidence, (Théra, M. A.; Baillon, J.-B., Fixed Point Theory and Applications (1991), Longman Sci. & Tech: Longman Sci. & Tech Essex), 293-302 · Zbl 0819.47074 [7] Ben-El-Mechaiekh, H.; Deguire, P.; Granas, A., Points fixes et coïncidences pour les fonctions multivoque-II (Applications de type ϕ et \(ϕ^∗)\), C. R. Acad. Sci. Paris, 295, 381-384 (1982) · Zbl 0525.47043 [8] Ben-El-Mechaiekh, H., The coincidence problem for compositions of set-valued maps, Bull. Austral. Math. Soc., 41, 421-434 (1990) · Zbl 0688.54030 [9] Ben-El-Mechaiekh, H., Fixed points for compact set-valued maps, Q & A in General Topology, 10, 153-156 (1992) · Zbl 0803.54038 [10] Zhang, C.-J., Generalized variational inequalities and generalized quasi-variational inequalities, Appl. Math. & Mech., 14, 333-344 (1993) · Zbl 0780.49010 [11] Chang, S.-S.; Zhang, C.-J., On a class of generalized variational inequalities and quasi-variational inequalities, J. Math. Anal. Appl., 179, 250-259 (1993) · Zbl 0803.49011 [12] Berge, C., Espaces Topologique (1959), Dunod: Dunod Paris [13] Shih, M.-H.; Tan, K.-K., Generalized bi-quasi-variational inequalities, J. Math. Anal. Appl., 143, 66-85 (1989) · Zbl 0688.49008 [14] Ding, X.-P.; Tan, K.-K., Generalized variational inequalities and generalized quasi-variational inequalities, J. Math. Anal. Appl., 148, 497-508 (1990) · Zbl 0714.49013 [15] Kum, S., A generalization of generalized quasi-variational inequalities, J. Math. Anal. Appl., 182, 158-164 (1994) · Zbl 0804.49012 [16] Browder, F. E., A new generalization of the Schauder fixed point theorem, Math. Ann., 174, 285-290 (1967) · Zbl 0176.45203 [17] Shih, M.-H.; Tan, K.-K., Minimax inequalities and applications, Contemp. Math. Amer. Math. Soc., 54, 45-63 (1986) [18] Kneser, H., Sur un theoreme fondamental de la theorie des jeux, C. R. Acad. Sci. Paris, 234, 2418-2420 (1952) · Zbl 0046.12201 [19] Sion, M., On general minimax theorems, Pacific J. Math., 8, 171-176 (1958) · Zbl 0081.11502 [20] Browder, F. E., The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann., 177, 283-301 (1968) · Zbl 0176.45204 [22] Park, S., Fixed point theory of multifunctions in topological vector spaces, J. Korean Math. Soc., 29, 191-208 (1992) · Zbl 0758.47048 [23] Park, S., Fixed point theory of multifunctions in topological vector spaces—II, J. Korean Math. Soc., 30, 413-431 (1993) · Zbl 0797.47029 [24] Park, S., Remarks on fixed points of generalized upper hemicontinuous maps, (Proc. in Honor of K.-H. Sohn (1995), Cheonnam Nat. Univ), 15-24 [25] Park, S.; Bae, J. S., On zeros and fixed points of multifunctions with non-compact convex domains, Comment. Math. Univ. Carolinae, 34, 257-264 (1993) · Zbl 0834.47050 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.