×

zbMATH — the first resource for mathematics

Spacelike hypersurfaces of constant mean curvature and Calabi-Bernstein type problems. (English) Zbl 0912.53046
Authors’ abstract: “Spacelike graphs of constant mean curvature over compact Riemannian manifolds in Lorentzian manifolds with constant sectional curvature are studied. The corresponding Calabi-Bernstein type problems are stated. In the case of nonpositive sectional curvature, all their solutions are obtained, and for positive sectional curvature well-known results are extended”.

MSC:
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. AKUTAGAWA, On spacelike hypersurfaces with constant mean curvature in the de Sitter space, Math. Z. 196 (1987), 13-19. · Zbl 0611.53047
[2] L. J. ALIAS, A. ROMERO AND M. SANCHEZ, Uniqueness of complete spacelike hypersurfaces of constan mean curvature in Generalized Robertson-Walker spacetimes, Gen. Relativity Gravitation 27 (1995), 71-84. · Zbl 0908.53034
[3] L. J. ALIAS, A. ROMERO AND M. SANCHEZ, Spacelike hypersurfaces of constant mean curvature i spatially closed Lorentzian manifolds, Anales de Fisica, WOGDA’94, Proceedings of the Third Fall Workshop: Differential Geometry and its Applications (1995), 177-187. · Zbl 0838.53048
[4] A. L. BESSE, Einstein Manifolds, Springer-Verlag, Berlin 1987 · Zbl 0613.53001
[5] E. CALABI, Examples of Bernstein problems for some nonlinear equations, Proc. Sympos. Pure Math 15 (1968), 223-230. · Zbl 0211.12801
[6] S. -Y. CHENG AND S. -T. YAU, Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces, Ann of Math. 104 (1976), 407-419. JSTOR: · Zbl 0352.53021
[7] Y. CHOQUET-BRUHAT, Quelques proprietes des sous-varietes maximales d’une variete lorentzienne, C. R. Acad. Sci. Paris, Ser. A, 281 (1975), 577-580. · Zbl 0324.53046
[8] A. J. GODDARD, Some remarks on the existence of spacelike hypersurfaces of constant mean curvature, Math. Proc. Cambridge Philos. Soc. 82 (1977), 489-495. · Zbl 0386.53042
[9] S. MONTIEL, An integral inequality for compact spacelike hypersurfaces in de Sitter space an applications to the case of constant mean curvature, Indiana Univ. Math. J. 37 (1988), 909-917. · Zbl 0677.53067
[10] B. O’NEILL, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983. · Zbl 0531.53051
[11] S. STUMBLES, Hypersurfaces of constant mean extrinsic curvature, Ann. Physics 133 (1981), 28-56 · Zbl 0472.53063
[12] A. TREIBERGS, Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent Math. 66 (1982), 39-52. · Zbl 0483.53055
[13] K. YANO, On harmonic and Killing vector fields, Ann. of Math. 55 (1952), 38^5 JSTOR: · Zbl 0046.15603
[14] S. -T. YAU, Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci U. S. A. 74 (1977), 1798-1799. JSTOR: · Zbl 0355.32028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.