Moree, Pieter; Stevenhagen, Peter Prime divisors of Lucas sequences. (English) Zbl 0913.11048 Acta Arith. 82, No. 4, 403-410 (1997). Let \(d>1\) be a squarefree integer and \(\mathbb{K}= \mathbb{Q}(\sqrt{d})\) a real quadratic field. Let \(\varepsilon= a+b\sqrt{d}\) be a fundamental unit in the ring of integers of \(\mathbb{K}\), and \(\overline{\varepsilon}\) its conjugate. The Lucas sequence associated with \(\mathbb{K}\) is the integer sequence defined by \[ X_{\mathbb{K}}= \{\text{Tr}_{\mathbb{K}/\mathbb{Q}} (\varepsilon^n) \}_{n=0}^\infty= \{\varepsilon^n+ \overline{\varepsilon}^n \}_{n=0}^\infty. \] The authors show that the set of prime numbers \(p\) that divide some term of the sequence \(X_{\mathbb{K}}\) has a natural density \(\delta_{\mathbb{K}}\) and determine it for each \(\mathbb{K}\). Reviewer: P.Kiss (Eger) Cited in 1 ReviewCited in 5 Documents MSC: 11R45 Density theorems 11B39 Fibonacci and Lucas numbers and polynomials and generalizations 11R11 Quadratic extensions Keywords:prime divisors; Chebotarev density theorem; real quadratic field; fundamental unit; Lucas sequence PDF BibTeX XML Cite \textit{P. Moree} and \textit{P. Stevenhagen}, Acta Arith. 82, No. 4, 403--410 (1997; Zbl 0913.11048) Full Text: DOI EuDML OpenURL