Detection of chaotic determinism in time series from randomly forced maps. (English) Zbl 0913.62080

Summary: Time series from biological systems often display fluctuations in the measured variables. Much effort has been directed at determining whether this variability reflects deterministic chaos, or whether it is merely “noise”. Despite this effort, it has been difficult to establish the presence of chaos in time series from biological systems. The output from a biological system is probably the result of both its internal dynamics, and the input to the system from the surroundings. This implies that the system should be viewed as a mixed system with both stochastic and deterministic components.
We present a method that appears to be useful in deciding whether determinism is present in a time series, and if this determinism has chaotic attributes, i.e., a positive characteristic exponent that leads to sensitivity to initial conditions. The method relies on fitting a nonlinear autoregressive model to the time series followed by an estimation of the characteristic exponents of the model over the observed probability distribution of states for the system. The method is tested by computer simulations, and applied to heart rate variability data.


62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62P10 Applications of statistics to biology and medical sciences; meta analysis
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI


[1] Kaplan, D.; Glass, L., Direct test for determinism in a time series, Phys. Rev. Lett., 68, 427-430 (1992)
[2] Kaplan, D. T.; Cohen, R. J., Is fibrillation chaos?, Circulation Res., 67, 886-892 (1990)
[3] Kennel, M. B.; Isabelle, S., Method to distinguish possible chaos from colored noise and to determine embedding parameters, Phys. Rev. A, 46, 3111-3118 (1992)
[4] Theiler, J.; Galdrikian, B.; Longtin, A.; Eubank, S.; Doyne Farmer, J., Using surrogate data to detect nonlinearity in time series, (Casdagli, M.; Eubank, S., Nonlinear Modeling and Forecasting, SFI Studies in the Sciences of Complexity. Nonlinear Modeling and Forecasting, SFI Studies in the Sciences of Complexity, Proc., Vol. XII (1992), Addison-Wesley: Addison-Wesley Reading, MA), 163-188
[5] Tsonis, A. A.; Elsner, J. B., Nonlinear prediction as a way of distinguishing chaos from random fractal sequences, Nature, 358, 217-220 (1992)
[6] Osborne, A. R.; Provenzale, A., Finite correlation dimension for stochastic systems with power-law spectra, Physica D, 35, 357-379 (1989) · Zbl 0671.60030
[7] Rapp, P. E., Chaos in the neurosciences: Cautionary tales from the frontier, The Biologist, 40, 89-94 (1993)
[8] Rapp, P. E.; Albano, A. M.; Schmah, T. I.; Farwell, L. A., Filtered noise can mimic low-dimensional chaotic attractors, Phys. Rev. E, 47, 2289-2297 (1993)
[9] Haber, R.; Keviczky, L., Identification of nonlinear dynamic systems, (IFAC Symp. Ident. Sys. Param. Est.. IFAC Symp. Ident. Sys. Param. Est., Tbilisi, Georgia (1976)), 62-112 · Zbl 0384.93013
[10] Billings, S. A.; Leontaritis, I. J., Parameter estimation techniques for nonlinear systems, (6th IFAC Symp. Ident. Sys. Param. Est.. 6th IFAC Symp. Ident. Sys. Param. Est., Washington, DC (1982)), 427-432 · Zbl 0646.93063
[11] Denton, T. A.; Diamond, G. A.; Khan, S. S.; Karagueuzian, H., Can the techniques of nonlinear dynamics detect chaotic behavior in electrocardiographic signals?, J. Electrocardiology, 24, 84-90 (1992), (Suppl.)
[12] Kanters, J. K.; Holstein-Rathlou, N.-H.; Agner, E., Lack of evidence for low-dimensional chaos in heart rate variability, J. Cardiovascular Electrophysiology, 5, 591-601 (1994)
[13] Yip, K.-P.; Marsh, D. J.; Holstein-Rathlou, N.-H., Evidence of low-dimensional chaos in renal blood flow control in genetic and experimental hypertension, Physica D, 80, 95-104 (1995) · Zbl 0884.92013
[14] Alkaike, H., A new look at the statistical model identification, IEEE Trans. Automat. Control., AC-19, 716-723 (1974)
[15] Korenberg, M. J., Identifying nonlinear difference equation and functional expansion representations: the fast orthogonal algorithm, Ann. Biomed. Eng., 16, 123-142 (1988)
[16] Korenberg, M. J., Fast orthogonal algorithms for nonlinear system identification and time series analysis, (Marmarelis, V. Z., Advanced Methods of Physiological System Modeling, Vol. 2 (1989), Plenum Press: Plenum Press New York), 221-240 · Zbl 0662.62099
[17] Eckmann, J. P.; Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Modern Phys., 57, 617-656 (1985) · Zbl 0989.37516
[18] Eckmann, J. P.; Kamphorst, S. O.; Ruelle, D.; Ciliberto, S., Lyapunov exponents from time series, Phys. Rev. A, 34, 4971-4979 (1985)
[19] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Physica D, 16, 285-317 (1985) · Zbl 0585.58037
[20] Korenberg, M. J.; Paarman, L. P., An orthogonal ARMA identifier with automatic order estimation for biological modeling, Ann. Biomed. Eng., 17, 571-592 (1989)
[21] Geist, K.; Parlitz, U.; Lauterborn, W., Comparison of different methods for computing Lyapunov exponents, Progr. Theoret. Phys., 83, 875-893 (1990) · Zbl 1058.65512
[22] Mackey, M. C.; Glass, L., Oscillation and chaos in physiological control systems, Science, 197, 287-289 (1977) · Zbl 1383.92036
[23] Goldberger, A. L.; Rigney, D. R.; West, B. J., Chaos and fractals in human physiology, Scientific American, 262, 42-49 (1990)
[24] Babloyantz, A.; Destexhe, A., Is the normal heart a periodic oscillator?, Biol. Cybernet., 58, 203-211 (1988)
[25] Sands, K. E.; Appel, M. L.; Lilly, L. S.; Schoen, F. J.; Mudge, G. H.J.; Cohen, R. J., Power spectrum analysis of heart rate variability in human cardiac transplant recipients, Circulation, 79, 76-82 (1989)
[26] Sugihara, G.; May, R. M., Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, Nature, 344, 734-741 (1990)
[27] Abarbanel, H. D.I., Analysis of Observed Chaotic Data (1996), Springer: Springer New York · Zbl 0875.70114
[28] Abarbanel, H. D.I.; Brown, R.; Sidorowich, J. J.; Tsimring, L. S., The analysis of observed chaotic data in physical systems, Rev. Modern Phys., 65, 1331-1392 (1993)
[29] Ellner, S.; Turchin, P., Chaos in a noisy world: New methods and evidence from time-series analysis, American Naturalist, 145, 343-375 (1995)
[30] Nychka, D.; Ellner, S.; Gallant, R.; McCaffrey, D., Finding chaos in noisy systems, J. Roy. Statist. Soc. Ser. B, 54, 399-426 (1992)
[31] McCaffrey, D.; Ellner, S.; Gallant, R.; Nychka, D., Estimating the Lyapunov exponent of a chaotic system with nonparametric regression, J. Amer. Statist. Assoc., 87, 682-695 (1992) · Zbl 0782.62045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.