zbMATH — the first resource for mathematics

Incremental unknowns on nonuniform meshes. (English) Zbl 0913.65088
Incremental unknowns were introduced to solve nonlinear partial differential equations. This method is extended to non-uniform meshes here in order to be able to solve boundary layer problems as well. The emphasis of this paper is on elliptic differential operators in 1 to 3 dimensions. Specifically second-order incremental unknowns are introduced for the coarse and fine grid components. It is shown that the resulting matrix representation of the thus discretized partial differential equation will have a smaller condition number than the one for the uniform mesh case for several standard problems in computational fluid dynamics.
Reviewer: F.Uhlig (Auburn)

65N06 Finite difference methods for boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
65F35 Numerical computation of matrix norms, conditioning, scaling
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
76D05 Navier-Stokes equations for incompressible viscous fluids
76M25 Other numerical methods (fluid mechanics) (MSC2010)
Full Text: DOI EuDML
[1] R. E. BANK, T. F. DUPONT, H. YSERENTANT, The Hierarchical Basis Multigrid Method, Numer. Math. 52, 1988, 4227-458. Zbl0645.65074 MR932709 · Zbl 0645.65074 · doi:10.1007/BF01462238 · eudml:133245
[2] S. BIRINGEN and A. HUSER, Calculation of two-dimensional shear-driven cavity flows at high Reynolds numbers, Int J. for Num. Meth. in Fluids, vol. 14, 1087-1109 (1992). Zbl0753.76116 · Zbl 0753.76116 · doi:10.1002/fld.1650140906
[3] M. H. CARPENTER, D. GOTTLIEB and S. ABARBANEL, Time-Stable Boundary Conditions for Finite Difference Schemes Solving Hyperbolic Systems Methodology and Application to High-Order Compact Schemes, ICASE Preprint series. Zbl0832.65098 MR1275021 · Zbl 0832.65098 · doi:10.1006/jcph.1994.1057
[4] B. COCKBURN and C. W. SHU, Nonlinearly Stable Compact Schemes for shock calculations, ICASE Preprint series, May 1992. Zbl0805.65085 MR1275104 · Zbl 0805.65085 · doi:10.1137/0731033
[5] J. P. CHEHAB, Solution of Generalized Stokes Problems Using Hierarchical Methods and Incremental Unknowns, App. Num. Math. 21, 9-42, (1996). Zbl0853.76044 MR1418694 · Zbl 0853.76044 · doi:10.1016/0168-9274(95)00130-1
[6] J. P. CHEHAB, Incremental Unknowns Method and Compact Schemes, M2AN, 32, 1, 1998, 51-83. Zbl0914.65110 MR1619593 · Zbl 0914.65110 · eudml:193867
[7] J. P. CHEBAB and R. TEMAM, Incremental Unknowns for Solving Nonlinear Eigenvalue Problems New Multiresolution Methods, Numerical Methods for PDE’s, 11, 199-228 (1995). Zbl0828.65124 MR1325394 · Zbl 0828.65124 · doi:10.1002/num.1690110304
[8] J. P. CHEBAB, A Nonlinear Adaptative Multiresolution Method in Finite Differences with Incremental Unknowns, Modélisation Mathématique et Analyse Numérique (M2AN), Vol. 29, 4, 451-475, 1995. Zbl0836.65114 MR1346279 · Zbl 0836.65114 · eudml:193781
[9] M. CHEN, A. MIRANVILLE and R. TEMAM, Incremental Unknows in Finite Differences in Space Dimension 3, Computational and Applied Mathematics, 14, 3 (1995), 1-15. MR1384185
[10] M. CHEN and R. TEMAM, Incremental Unknows for Solving Partial Differential Equations, Numerische Matematik, Springer Verlag, 59, 1991, 255-271. Zbl0712.65103 MR1106383 · Zbl 0712.65103 · doi:10.1007/BF01385779 · eudml:133548
[11] M. CHEN and R. TEMAM, Incremental Unknows in Finite Differences Condition Number of the Matrix, SIAM J. on Matrix Analysis and Applications (SIMAX), 14, n^\circ 2, 1993, 432-455. Zbl0773.65080 MR1211799 · Zbl 0773.65080 · doi:10.1137/0614031
[12] M. CHEN and R. TEMAM, Non Linear Galerkin Method in the Finite Difference case and Wavelet like Incremental Unknowns, Numer. Math. 64, 1993, 271-294. Zbl0798.65093 MR1206665 · Zbl 0798.65093 · doi:10.1007/BF01388690 · eudml:133706
[13] A. DEBUSSCHE, T. DUBOIS and R. TEMAM, The Nonlinear Galerkin Method: A Multiscale Method Applied to the Simulation of Homogeneous Turbulent Flows, Theorical and Computational Fluid Dynamics, 7, 4, 1995, 279-315. Zbl0838.76060 · Zbl 0838.76060 · doi:10.1007/BF00312446
[14] T. DUBOIS and A. MIRANVILLE, Existence and uniqueness results for a velocity formulation of Navier Stokes equations in a Channel, Applicable Analysis, 55, 1994, 103-138. Zbl0833.35001 MR1379647 · Zbl 0833.35001 · doi:10.1080/00036819408840293
[15] J. KIM and P. MOIN, Numerical investigation of turbulent channel flow, J. Fluid Mech. (1982, vol. 118, 341-377. Zbl0491.76058 · Zbl 0491.76058 · doi:10.1017/S0022112082001116
[16] S. K. LELE, Compact Finite Difference Schemes with Spectral like Resolution, J. Comp. Phys., 103, 1992, 16-42. Zbl0759.65006 MR1188088 · Zbl 0759.65006 · doi:10.1016/0021-9991(92)90324-R
[17] M. MARION and R. TEMAM, Nonlinear Galerkin Methods, SIAM Journal of Numerical Analysis, 26, 1989, 1139-1157. Zbl0683.65083 MR1014878 · Zbl 0683.65083 · doi:10.1137/0726063
[18] M. MARION and R. TEMAM, Nonlinear Galerkin Methods; The Finite elements case, Numerische Mathematik, 57, 1990, 205-226. Zbl0702.65081 MR1057121 · Zbl 0702.65081 · doi:10.1007/BF01386407 · eudml:133445
[19] J. SHEN, Hopf bifurcation of the unsteady regularized driven cavity flows, J. Comput. Phys. Vol. 95, 228-245 (1991). Zbl0725.76059 · Zbl 0725.76059 · doi:10.1016/0021-9991(91)90261-I
[20] R. TEMAM, Inertial Manifolds and Multigrid Methods, SIAM J. Math. Anal. 21, 1990, 154-178. Zbl0715.35039 MR1032732 · Zbl 0715.35039 · doi:10.1137/0521009
[21] R. TEMAM, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Science, Springer Verlag, 1988, 68. Zbl0662.35001 MR953967 · Zbl 0662.35001
[22] H. A. VAN DER VORST, Bi-CGSTAB a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 1992, 631-644. Zbl0761.65023 MR1149111 · Zbl 0761.65023 · doi:10.1137/0913035
[23] H. YSERENTANT, On Multilevel Splitting of Finite Element Spaces, Numer. Math. 49, 1986, 379-412. Zbl0608.65065 MR853662 · Zbl 0608.65065 · doi:10.1007/BF01389538 · eudml:133120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.