×

zbMATH — the first resource for mathematics

On reducibility of parabolic induction. (English) Zbl 0914.22019
The subject of the paper is the investigation of reducibility of parabolically induced representations of \(\text{Sp}(2n,F)\) and \(\text{SO}(2n+1,F)\), where \(F\) is a non-archimedean local field, by applying parabolic restriction to these representations. There is a variety of general results in which reducibility of induced representations is related to reducibility of representations induced from cuspidal representations. From given concrete applications I mention the determination of the composition series for representations induced from a one-dimensional representation of certain maximal parabolic subgroups. The method of this paper was used later by C. Jantzen to complete the determination of the composition series of representations induced from a one-dimensional representation of an arbitrary parabolic subgroup.

MSC:
22E50 Representations of Lie and linear algebraic groups over local fields
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [Ad] J. D. Adler,Self-contragredient supercuspidal representations of GL n , Proceedings of the American mathematical Society125 (1997), 2471–2479. · Zbl 0886.22011
[2] [Au] A.-M. Aubert,Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif p-adique, Transactions of the American Mathematical Society347 (1995), 2179–2189 (andErratum, Transactions of the American Mathematical Society348 (1996), 4687–4690). · Zbl 0827.22005
[3] [B] J. Bernstein, Draft of:Representations of p-adic groups (Lectures at Harvard University, 1992, written by Karl E. Rumelhart).
[4] [BZ] I. N. Bernstein and A. V. Zelevinsky,Induced representations of reductive p-adic groups I, Annales Scientifiques de l’École Normale Supérieure10 (1977), 441–472. · Zbl 0412.22015
[5] [C1] W. Casselman,The Steinberg character as a true character, Symposia on Pure Mathematics 26, American Mathematical Society, Providence, Rhode Island, 1973, pp. 413–417. · Zbl 0289.22017
[6] [C2] W. Casselman,Introduction to the theory of admissible representations of p-adic reductive groups, preprint.
[7] [GbKn] S. S. Gelbart and A. W. Knapp,L-indistinguishability and R groups for the special linear group, Advances in Mathematics43 (1982), 101–121. · Zbl 0493.22005
[8] [GfKa] I. M. Gelfand and D. A. Kazhdan,Representations of GL(n, k), Lie Groups and their Representations, Halstead Press, Budapest, 1974, pp. 95–118.
[9] [Go] D. Goldberg,Reducibility of induced representations for SP(2n) and SO(n), American Journal of Mathematics116 (1994), 1101–1151. · Zbl 0851.22021
[10] [Gu] R. Gustafson,The degenerate principal series for Sp(2n), Memoirs of the American Mathematical Society248 (1981), 1–81. · Zbl 0482.22013
[11] [J1] C. Jantzen,Degenerate principal series for symplectic groups, Memoirs of the American Mathematical Society488 (1993), 1–110.
[12] [J2] C. Jantzen,Degenerate principal series for orthogonal groups, Journal für die Reine und Angewandte Mathematik441 (1993), 61–98. · Zbl 0776.22004
[13] [J3] C. Jantzen,Degenerate principal series for symplectic and odd-orthogonal groups Memoirs of the American Mathematical Society590 (1996), 1–100.
[14] [J4] C. Jantzen,Reducibility of certain representations for symplectic and oddorthogonal groups, Compositio Mathematica104 (1996), 55–63. · Zbl 0866.22017
[15] [KuRa] S. S. Kudla and S. Rallis,Ramified degenerate principal series representations for Sp(n), Israel Journal of Mathematics78 (1992), 209–256. · Zbl 0787.22019
[16] [Mg] C. Moeglin, Letter, February 1997.
[17] [MgVW] C. Moeglin, M.-F. Vigneéras and J.-L. Waldspurger,Correspondances de Howe sur un corps p-adique, Lecture Notes in Mathematics1291, Springer-Verlag, Berlin, 1987.
[18] [Mi] G. Muić,Some results on square integrable representations; irreducibility of standard representations preprint. · Zbl 0909.22029
[19] [MrRp] F. Murnaghan and J. Repka,Reducibility of induced representations of split classical p-adic groups, Compositio Mathematica, to appear. · Zbl 0917.22009
[20] [Rd1] M. Reeder,Whittaker models and unipotent representations of p-adic groups, Mathematische Annalen308 (1997), 587–592. · Zbl 0874.22015
[21] [Rd2] M. Reeder,Hecke algebras and harmonic analysis on p-adic groups, American Journal of Mathematics119 (1997), 225–248. · Zbl 1012.22030
[22] [Rd3] M. Reeder, Letter, November 1996.
[23] [Ro1] F. Rodier,Décomposition de la série principale des groupes réductifs p-adiques, inHarmonic Analysis, Lecture Notes in Mathematics880, Springer-Verlag, Berlin, 1981.
[24] [Ro2] F. Rodier,Représentations de GL(n, k)où k est un corps p-adique, Séminaire Bourbaki no. 587 (1982), Astérisque92–93 (1982), 201–218.
[25] [Ro3] F. Rodier,Sur les représentations non ramifiées des groupes réductifs p-adiques; l’example de GSp(4), Bulletin de la Société Mathématique de France116 (1988), 15–42.
[26] [SnSt] P. Schneider and U. Stuhler,Representation theory and sheaves on the Bruhat-Tits building, Publications Mathématiques de l’Institut des Hautes Études Scientifiques85 (1997), 97–191. · Zbl 0892.22012
[27] [SaT] P. J. Sally and M. Tadić,Induced representations and classifications for GSp(2,F)and Sp(2,F), Mémoires de la Société Mathématique de France52 (1993), 75–133.
[28] [Sh1] F. Shahidi,A proof of Langlands conjecture on Plancherel measures; complementary series for p-adic groups, Annals of Mathematics132 (1990), 273–330. · Zbl 0780.22005
[29] [Sh2] F. Shahidi,Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke Mathematical Journal66 (1992), 1–41. · Zbl 0785.22022
[30] [Si] A. Silberger,Discrete series and classifications for p-adic groups I, American Journal of Mathematics103 (1981), 1241–1321. · Zbl 0484.22026
[31] [T1] M. Tadić,Classification of unitary representations in irreducible representations of general linear group (non-archimedean case), Annales Scientifiques de l’École Normale Supérieure19 (1986), 335–382. · Zbl 0614.22005
[32] [T2] M. Tadić,Induced representations of GL(n, A)for p-adic division algebras A, Journal für die Reine und Angewandte Mathematik405 (1990), 48–77. · Zbl 0684.22008
[33] [T3] M. Tadić,Notes on representations of non-archimedean SL(n), Pacific Journal of Mathematics152 (1992), 375–396. · Zbl 0724.22017
[34] [T4] M. Tadić,On Jacquet modules of induced representations of p-adic symplectic groups, inHarmonic Analysis on Reductive Groups, Proceedings, Bowdoin College 1989, Progress in Mathematics 101, Birkhäuser, Boston, 1991, pp. 305–314.
[35] [T5] M. Tadić,Representations of p-adic symplectic groups, Compositio Mathematica90 (1994), 123–181. · Zbl 0797.22008
[36] [T6] M. Tadić,Structure arising from induction and Jacquet modules of representations of classical p-adic groups, Journal of Algebra177 (1995), 1–33. · Zbl 0874.22014
[37] [T7] M. Tadić,On regular square integrable representations of p-adic groups, American Journal of Mathematics120 (1998), 159–210. · Zbl 0903.22008
[38] [W] J.-L. Waldspurger,Un exercice sur GSp(4,F)et les représentations de Weil, Bulletin de la Société Mathématique de France115 (1987), 35–69.
[39] [Z] A. V. Zelevinsky,Induced representations of reductive p-adic groups II, On irreducible representations of GL(n), Annles Scientifiques de l’École Normale Supérieure13 (1980), 165–210. · Zbl 0441.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.