Incremental unknowns method and compact schemes. (English) Zbl 0914.65110

The aim of this paper is to establish a link between the compact scheme discretization techniques and the incremental unknowns method (IU) in the double context of hierarchical methods and nonlinear Galerkin methods. For this purpose on the one hand the author uses a compact scheme for defining high-order incremental unknowns, and on the other hand he uses the incremental unknowns for preconditioning the underlying matrices of high-order discretization of the elliptic problem.
Finally some numerical results are presented which are related a combination of the IU method and the compact scheme. The efficiency of the data compression method is illustrated and the decay of magnitude of the structures according to the grid level to which they belong is compared. After that Dirichlet problems are considered for which second-order IU is used for preconditioning the matrix and efficient high accurate solutions are obtained.
Reviewer: A.L.Pletea (Iaşi)


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
65F35 Numerical computation of matrix norms, conditioning, scaling
65N06 Finite difference methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
Full Text: DOI EuDML


[1] R. E. BANK, T. F. DUPONT, H. YSERENTANTThe Hierarchical Basis Multigrid Method, Numer. Math. 52, 1988, 4227-458. Zbl0645.65074 MR932709 · Zbl 0645.65074 · doi:10.1007/BF01462238
[2] M. H. CARPENTER, D. GOTTLIEB, S. ABARBANEL, Time-Stable Boundary Conditions for Finite Difference Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes, J. comp. Phys. 111, 1994, 220-236. Zbl0832.65098 MR1275021 · Zbl 0832.65098 · doi:10.1006/jcph.1994.1057
[3] J. P. CHEHAB, R. TEMAMIncremental Unknowns for Solving Nonlinear Eigenvalue Problems. New Multiresolution Methods, Numencal Methods for PDE’s, 11, 199-228 (1995). Zbl0828.65124 MR1325394 · Zbl 0828.65124 · doi:10.1002/num.1690110304
[4] J. P. CHEHABA Nonlinear Adaptative Multiresolution Method in Finite Differences with Incremental Unknowns, M2AN, Vol. 29, 4, 451-475, 1995. Zbl0836.65114 MR1346279 · Zbl 0836.65114
[5] J. P. CHEHABSolution of Generalized Stokes Problems Using Hierarchical Methods and Incremental Unknowns, App. Num. Math., 21 (1996) 9-42. Zbl0853.76044 MR1418694 · Zbl 0853.76044 · doi:10.1016/0168-9274(95)00130-1
[6] M. CHEN, A. MIRANVILLE, R. TEMAMIncremental Unknows in Finite Differences in Space Dimension 3, Computational and Applied Mathematics, 14, 3, 1995, 1-15. MR1384185
[7] M. CHEN, R. TEMAMIncremental Unknows for Solving Partial Differential Equations, Numesrische Mathematik, Springer Verlag, 59, 1991, 255-271. Zbl0712.65103 MR1106383 · Zbl 0712.65103 · doi:10.1007/BF01385779
[8] M. CHEN, R. TEMAMIncremental Unknows in Finite Differences: Condition Number of the Matrix, SIAM. J. on Matrix Analysis and Applications (SIMAX), 14, n^\circ 2, 1993, 432-455. Zbl0773.65080 MR1211799 · Zbl 0773.65080 · doi:10.1137/0614031
[9] M. CHEN, R. TEMAMNonLinear Galerkin Method in Finite Difference case and Wavelet-like Incremental Unknowns, Numer. Math. 64, 1993, 271-294. Zbl0798.65093 MR1206665 · Zbl 0798.65093 · doi:10.1007/BF01388690
[10] B. COCKBURN, C. W. SHUNonlinearly Stable Compact Schemes for shock calculations, ICASE Preprint series, May 1992. Zbl0805.65085 MR1275104 · Zbl 0805.65085 · doi:10.1137/0731033
[11] L. COLLATZThe Numerical Treatment of Differential Equations, 3rd. ed., Springer Verlag, 1966. Zbl0086.32601 MR109436 · Zbl 0086.32601
[12] A. DEBUSSCHE, T. DUBOIS, R. TEMAMThe Nonlinear Galerkin Method: A Multiscale Method Applied to the Simulationof Homogeneous Turbulent Flows, Theorical and Computational Fluid Dynamics 7, 4, 1995, 279-315. Zbl0838.76060 · Zbl 0838.76060 · doi:10.1007/BF00312446
[13] S. K. LELECompact Finite Difference Schemes with Spectral like Resolution, J. Comp. Phys., 103, 16-42, 1992. Zbl0759.65006 MR1188088 · Zbl 0759.65006 · doi:10.1016/0021-9991(92)90324-R
[14] J. L. LIONS R. TEMAM, S. WANG, Splitting Up Methods and Numerical Analysis of Some Multiscale Problems, Computational Fluid Dynamics J, 5, 2, 1996, 279-315.
[15] M. MARION, R. TEMAMNonlinear Galerkin Methods, SIAM Journal of Numencal Analysis, 26, 1989, 1139-1157. Zbl0683.65083 MR1014878 · Zbl 0683.65083 · doi:10.1137/0726063
[16] M. MARION, R. TEMAMNonlinear Galerkin Methods; The Finite Elements Case, Numensche Mathematik, 57, 1990, 205-226. Zbl0702.65081 MR1057121 · Zbl 0702.65081 · doi:10.1007/BF01386407
[17] R. TEMAMInertial Manifolds and Multigrid Methods, SIAM. J. Math. Anal. 21, 1990, 154-178. Zbl0715.35039 MR1032732 · Zbl 0715.35039 · doi:10.1137/0521009
[18] R. TEMAMInfinite Dimensional Dynamical Systems in Mechantes and Physics, Applied Mathematical Science, Springer Verlag, 68, 1988. Zbl0662.35001 MR953967 · Zbl 0662.35001
[19] H. A. VAN DER VORST. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear System, SIAM. J. Sci. Stat. Comput., 13 (1992) 631-644. Zbl0761.65023 MR1149111 · Zbl 0761.65023 · doi:10.1137/0913035
[20] H. YSERENTANT. On Multilevel Splitting of Finite Element Spaces, Numer. Math. 49, 1986, 379-412. Zbl0608.65065 MR853662 · Zbl 0608.65065 · doi:10.1007/BF01389538
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.