zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive robust tracking for flexible spacecraft in presence of disturbances. (English) Zbl 0914.93033
Summary: The paper deals with trajectory tracking for a flexible spacecraft, subject to a gravity-gradient disturbance, under parameter uncertainties. The controls are gas jets and reaction wheels, and the measured variables describe the attitude and angular velocity of the rigid part. The flexible dynamics is treated as an additional disturbance acting on a rigid structure. First, an adaptive control is designed with only the gravity-gradient disturbance acting on the spacecraft; second, it is proved to be effective also in the presence of disturbance due to the flexibility, provided that appropriate robustness conditions on the controller gains are satisfied. These conditions use partial knowledge of the parameters describing the elastic dynamics. Simulations show the good performance of such control scheme and demonstrate its applicability even in the presence of input saturation.

93C40Adaptive control systems
93C95Applications of control theory
93C73Perturbations in control systems
Full Text: DOI