zbMATH — the first resource for mathematics

Time minimal control of batch reactors. (English) Zbl 0914.93043
Necessary mathematical tools for the time-optimal control of batch irreversible chain reaction are presented. The study is based on classical optimization theory and Pontryagin’s maximum principle. The mathematical complexity of the general design technique is structured into problems, subproblems, and side problems with explanations. Each problem is treated in good old mathematical fashion by the use of definitions, conditions, propositions, lemmas, and theorems.
The main objective of the paper is threefold: 1) to compute the closed-loop time-optimal controls near the terminal constraint, 2) to find the estimate of the number of switchings, to determine the singular extremals and switching functions, and 3) to introdue the concept of focal points and give an algorithm to compute conjugate and focal points along the singular extremal.
It is shown that the results of the analysis in the domain of set objectives combined with numerical simulation allow to find the time-optimal control law in many situations. Also, some results are extended to closed-loop suboptimal control of more complicated reactions.
The paper is organized into sections. In §1 the chemical kinetics under study is introduced, the control problems are stated, and the main results of the paper overviewed. §2 recalls the extremality results for time-optimal control. In §3 the concepts of projected and reduced control problems are introduced. In §4 the global bounds on the number of switches are found. §5 and §6 expose application examples and simulation results. §7 deals with the concept of conjugate and focal points. And §8 exposes the commented numerical experiments in terms of the statements.
The found time-optimal and suboptimal control laws are implemented on a batch reactor located at Caen, France.

93C95 Application models in control theory
49N05 Linear optimal control problems
93C83 Control/observation systems involving computers (process control, etc.)
Full Text: DOI EuDML
[1] A. Agrachev: Symplectic methods in optimization and control. Geometry of feedback and optimal control, Marcel Dekker, New York, 1997. Zbl0965.93034 · Zbl 0965.93034
[2] B. Bonnard: Rapport préliminaire sur la conduite optimale des réacteurs chimiques de type batch, Prépublication de l’Université de Bourgogne, Laboratoire de Topologie, n^\circ 58, 1995.
[3] B. Bonnard, J. de Morant: Towards a geometric theory in the time minimal control of chemical batch reactors, SIAM J. Contr. Opt., 33, 1995, 1279-1311. Zbl0882.49024 MR1348110 · Zbl 0882.49024
[4] B. Bonnard, I. Kupka: Théorie des singularités de l’application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, Forum mathematicum, 5, 1993, 111-159. Zbl0779.49025 MR1205250 · Zbl 0779.49025
[5] B. Bonnard, G. Launay, M. Pelletier: Classification générique de synthèses temps minimales avec cible de codimension un et applications. Ann. IHP (an), 14, 1997, 55-102. Zbl0891.49012 MR1437189 · Zbl 0891.49012
[6] I. Ekeland: Discontinuité des champs hamiltoniens et existence de solutions optimales en calcul des variations, Pub. IHES, 47, 1977, 1-32. Zbl0447.49015 MR493584 · Zbl 0447.49015
[7] M. Feinberg: Chemical reaction network structure and stability of complex isothermal reactions, Chemical Engineering Sciences, 42, 1987, 2229-2268.
[8] H. Grauert, K. Fritzche: Several complex variables, Springer Verlag, New York, 1976. Zbl0381.32001 MR414912 · Zbl 0381.32001
[9] W. Harmon Ray: Advanced Process Control, Butterworths Reprint Series in chemical engineering, 1989.
[10] H. Hermes: Lie algebras of vector fields and local approximation of attainable sets, SIAM J. Control Opt., 16, 1978, 715-727. Zbl0388.49025 MR493664 · Zbl 0388.49025
[11] B. Jakubczyk: Critical Hamiltonians and feedback invariants. Geometry of feedback and optimal control, Marcel Dekker, New York, 1997. Zbl0925.93136 MR1493015 · Zbl 0925.93136
[12] I. Kupka: Geometric theory of extremals in optimal control problems, I. The fold and Maxwell cases, Trans. Amer. Math. Soc., 299, 1987, 225-243. Zbl0606.49016 MR869409 · Zbl 0606.49016
[13] I. Kupka: Optimalité des extrémales ordinaires, Communication personnelle.
[14] G. Launay, M. Pelletier: The generic local structure of time-optimal synthesis with a target of codimension one in dimension greater than two, J. Dyn. Contr. Syst., 3, 1997, 165-204. Zbl0951.49027 MR1449981 · Zbl 0951.49027
[15] L. Pontriaguine et al.: Théorie mathématique des processus optimaux, Mir, Moscou, 1974. Zbl0289.49002 MR358482 · Zbl 0289.49002
[16] H.J. Sussmann: The structure of time-optimal trajectories for single-input systems in the plane: the C\infty non singular case, SIAM J. Control Opt., 25, 1987, 433-465. Zbl0664.93034 MR877071 · Zbl 0664.93034
[17] H.J. Sussmann: Regular synthesis for time-optimal control for single-input real analytic systems in the plane, SIAM J. Control Opt., 25, 1987, 1145-1162. Zbl0696.93026 MR905037 · Zbl 0696.93026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.