×

Armendariz rings and Gaussian rings. (English) Zbl 0915.13001

The authors establish the following results:
(1) A ring \(R\) is Armendariz \(\Leftrightarrow R[x]\) is Armendariz.
(2) Let \(R\) be a von Neumann ring. Then \(R\) is Armendariz \(\Leftrightarrow R\) is reduced.
(3) Let \(R\) be a commutative ring. Then \(R\) is Gaussian \(\Leftrightarrow\) every homomorphic image of \(R\) is Armendariz.
(4) Let \(R\) be a commutative rings. Then \(R[x]\) is Gaussian \(\Leftrightarrow R\) is von Neumann regular.
(5) For a commutative ring \(R\), the power series ring \(R[[x]]\) is Gaussian \(\Leftrightarrow R[[x]]\) is a reduced arithmetical ring \(\Leftrightarrow R[[x]]\) has weak global dimension one \(\Leftrightarrow R[[x]]\) is Bezout \(\Leftrightarrow R\) is von Neumann regular and \(x_0\)-algebraically compact.

MSC:

13A15 Ideals and multiplicative ideal theory in commutative rings
16E50 von Neumann regular rings and generalizations (associative algebraic aspects)
13F25 Formal power series rings
13F20 Polynomial rings and ideals; rings of integer-valued polynomials
16S36 Ordinary and skew polynomial rings and semigroup rings
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/0021-8693(77)90318-0 · Zbl 0406.13004 · doi:10.1016/0021-8693(77)90318-0
[2] DOI: 10.1006/jabr.1996.0110 · Zbl 0857.13017 · doi:10.1006/jabr.1996.0110
[3] DOI: 10.1017/S1446788700029190 · Zbl 0292.16009 · doi:10.1017/S1446788700029190
[4] DOI: 10.1016/0021-8693(77)90405-7 · Zbl 0393.13004 · doi:10.1016/0021-8693(77)90405-7
[5] DOI: 10.1090/S0002-9939-1986-0861751-0 · doi:10.1090/S0002-9939-1986-0861751-0
[6] Gilmer R., Queen’s Papers in Pure and Applied Mathematics 90 (1992)
[7] Gilmer R., J. Reine Angew. Math 278 pp 145– (1975)
[8] Goodearl K.R., Von Neumann Regular Rings (1991)
[9] DOI: 10.1090/S0002-9939-1964-0179197-5 · doi:10.1090/S0002-9939-1964-0179197-5
[10] DOI: 10.3792/pjaa.73.14 · Zbl 0960.16038 · doi:10.3792/pjaa.73.14
[11] Tsang H., Dissertation (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.