Stratmann, Bernd Complexification of proper Hamiltonian \(G\)-spaces. (English) Zbl 0915.32003 Schriftenreihe des Graduiertenkollegs Geometrie und Mathematische Physik. 29. Bochum: Univ. Bochum, Institut für Mathematik, 29 p. (1998). From the introduction: “Let \((M,\tau)\) be a symplectic manifold and \(G\) a real Lie group acting properly by symplectic automorphisms on \((M,\tau)\).The goal of this paper is to complexify \((M, \tau,G)\). This is of interest since the symplectic reduction of a complex manifold is itself a complex space. This provides a method for analyzing the symplectic reduction of \(M\) via its embedding in the symplectic reduction of the complexification of \(M\)”. Cited in 1 Document MSC: 32E10 Stein spaces 53C10 \(G\)-structures 32Q15 Kähler manifolds 32-02 Research exposition (monographs, survey articles) pertaining to several complex variables and analytic spaces Keywords:symplectic manifold; real Lie group; symplectic reduction; complexification PDF BibTeX XML Cite \textit{B. Stratmann}, Complexification of proper Hamiltonian \(G\)-spaces. Bochum: Univ. Bochum, Institut für Mathematik (1998; Zbl 0915.32003) OpenURL