×

zbMATH — the first resource for mathematics

The method of layer potentials for non-smooth domains with arbitrary topology. (English) Zbl 0915.35032
This paper is devoted to the study of boundary value problems for the Laplace operator in Lipschitz domains with arbitrary topology via boundary layers. First, two integral identities of Rellich type are employed for scalar-valued harmonic functions and for harmonic vector fields (§3). These and certain Fredholm operator properties (established in §4) are used to investigate invertibility properties of boundary integral operators, single layer and (singular) double layer potential operators (introduced in §2 and needed in the sequel). Those results are utilized in the last section (§5) in order to discuss solvability as well as regularity representation of solutions to three boundary value problems in bounded Lipschitz domains with arbitrary topology, namely, for the Dirichlet and Neumann problems for the Laplace operator and for a problem occurring in irrotational incompressible fluid flow (the Kelvin problem).

MSC:
35J25 Boundary value problems for second-order elliptic equations
31B20 Boundary value and inverse problems for harmonic functions in higher dimensions
35Q35 PDEs in connection with fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [CoMcMe] R. Coifman, A. McIntosh and Y. Meyer,L’intégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes Lipschitziennes, Ann. of Math.116 (1982), 361-387. · Zbl 0497.42012
[2] [Da] J. E. Dahlberg,On the Poisson integral for Lipschitz and C 1 domains, Studia Math.66 (1979), 13-24. · Zbl 0422.31008
[3] [DaKe] B. Dahlberg and C. Kenig,Hardy spaces and the L p-Neumann problem for Laplace’s equation in a Lipschitz domain, Ann. of Math.125 (1987), 437-465. · Zbl 0658.35027
[4] [DaLi] R. Dautray and J.-L. Lions,Mathematical Analysis and Numerical Methods for Science and Technology, vol. 1-4, Springer-Verlag, Berlin, Heidelberg, 1990.
[5] [EsFaVe] L. Escauriaza, E. Fabes and G. Verchota,On a regularity method for weak solutions to transmission problems with internal Lipschitz boundary, Proc. Amer. Math. Soc.115 (1992), 1069-1076. · Zbl 0761.35013
[6] [Fa] E. B. Fabes,Layer potential methods for boundary value problems on Lipschitz domains, Potential Theory, Surveys and Problems, J. Král et al eds., Springer-Verlag Lecture Notes in Math., No. 1344, 1988, pp. 55-80.
[7] [FaJoRi] E. Fabes, M. Jodeit and N. Rivière,Potential techniques for boundary value problems on C 1 domains, Acta Math.141 (1978), 165-186. · Zbl 0402.31009
[8] [FaMeMi] E. Fabes, O. Mendez and M. Mitrea,Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains, preprint, (1997).
[9] [Kel] W. T. B. Kelvin,Mathematical and Physical Papers, Cambridge University Press, 1910. · JFM 41.0019.02
[10] [JeKe] D. Jerison and C. Kenig,The Neumann problem on Lipschitz domains, Bull. Amer. Math. Soc.4 (1981), 203-207. · Zbl 0471.35026
[11] [MeCo] Y. Meyer, R. R. Coifman,Opérateurs multilinéaires Hermann, Paris, 1991.
[12] [MiD] D. Mitrea,Layer potential operators and boundary value problems for differential forms on Lipschitz domains, Ph. D. Thesis, University of Minnesota, 1996.
[13] [MiMiPi] D. Mitrea, M. Mitrea and J. Pipher, Vector potential theory on non-smooth domains in ?3 and applications to electro-magnetic scattering, J. of Fourier Analysis and Applications3 (1997), 131-192. · Zbl 0877.35124
[14] [MiMiTa] D. Mitrea, M. Mitrea and M. Taylor,Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds, preprint, (1997).
[15] [MiM] M. Mitrea,The method of layer potentials in electro-magnetic scattering theory on non-smooth domains, Duke Math. J.77 (1995), 111-133. · Zbl 0833.35138
[16] [Ne] J. Ne?as,Les méthodes directes en théorie des équations élliptique, Academia, Prague, 1967.
[17] [Pi] R. PicardAn elementary proof for a compact embedding result in generalized electromagnetic theory, Math. Z.187 (1984), 151-164. · Zbl 0547.58038
[18] [Re] F. Rellich,Darstellung der Eigenwerte von ?u+?u durch ein Randintegral, Math. Z.46 (1940), 635-646. · JFM 66.0460.01
[19] [Tu] A. W. Tucker,A boundary-value theorem for harmonic tensors, Bull. Amer. Math. Soc.47 (1941), 714.
[20] [Ve] G. Verchota,Layer potentials and boundary value problems for Laplace’s equation in Lipschitz domains, J. Funct. Anal.59 (1984), 572-611. · Zbl 0589.31005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.