×

Asymptotic analysis of magnetic induction with high frequency for solid conductors. (English) Zbl 0915.65125

This paper describes the behaviour in time and in space of an induction field created by an imposed high frequency alternating current around a solid conductor. Two time scales have been used. The induction field is decomposed in a mean field and an oscillating field. With the help of singular perturbations theory and the multiple scales method, two uncoupled models are obtained. For a cross section of a solid column of metal, two first terms of the asymptotic expansion of the induction field are build. In the case of a cylinder column, the previous results are applied by computing numerically the induction for different values of the frequency.

MSC:

65Z05 Applications to the sciences
35Q60 PDEs in connection with optics and electromagnetic theory
78A25 Electromagnetic theory (general)
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] O. BESSON, J. BOURGEOIS, P. CHEVALIER, J. RAPPAZ and R. TOUZANI, Numerical modelling of electromagnetic casting processes. Journal of Computational Physics 92, 2 (1991), 482-507. Zbl0721.65076 MR1094260 · Zbl 0721.65076
[2] J. P. BRANCHER, J. ETAY and O. SERO-GUILLAUME, Formage d’une lame. J.M.T.A. 2, 6 (1983), 976-989. Zbl0564.76119 · Zbl 0564.76119
[3] O. COULAUD, Modélisation haute fréquence en magnétohydrodynamique: aspect magnétique. Tech. Rep. 2407, INRIA, 1994.
[4] O. COULAUD, Asymptotic analysis of magnetic induction with high frequency for liquid conductors. Tech. Rep. In Preparation, INRIA, 1997. · Zbl 0902.76097
[5] O. COULAUD and A. HENROT, A nonlinear boundary value problem solved by spectral methods. Applicable Analysis 43 (1991), 229-244. Zbl0719.35025 MR1284320 · Zbl 0719.35025
[6] W. ECKHAUS, Asymptotic analysis of singular perturbations, vol. 9 of Studies in Mathematics and its Applications. Springer-Verlag, New-York, 1979. Zbl0421.34057 MR553107 · Zbl 0421.34057
[7] M. GARBEY, A schwarz alternating procedure for singular perturbation problems. SIAM J. Scientific Computing 17, 5 (sept. 1996), 1175-1201. Zbl0865.65087 MR1404868 · Zbl 0865.65087
[8] L. LANDAU and E. LIFSHTTZ, Electrodynamics of continuons media, vol. 8 of Course of theoretical physics. Pergamon press, 1960. Zbl0122.45002 · Zbl 0122.45002
[9] B. LI, The magnetothermal phenomena in electromagnetic levitation processes. Int. J. Engng. Sci. 31, 2 (1993), 201-220.
[10] A. J. MESTEL, Magnetic levitation of liquids metals. Journal of Fluid Mechanics 117 (1982), 27-43. Zbl0495.76097 MR656642 · Zbl 0495.76097
[11] A. H. NAYFEH, Perturbation methods. Wiley Interscience Publ. Co New York, 1973. Zbl0265.35002 MR404788 · Zbl 0265.35002
[12] NOVELECT. Les applications innovantes de l’induction dans l’industrie. Les guides de l’innovation, documentation EDF CFE, 1992.
[13] J. A. SHERCLIFF, Magnetic shaping of molten metal columns. Proc. Royal. Soc. London 375, A (1981), 455-473.
[14] A. D. SNEYD and H. K. MOFFATT, Fluid dynamical aspects of the levitation-melting process. Journal of Fluid Mechanics 117 (1982), 45-70. Zbl0494.76111 MR656643 · Zbl 0494.76111
[15] A. B. VASEL’EVA V. F. BUTUZOV and L. V. KALACHEV, The Boundary Function Method for Singular Perturbations Problems, vol. 14 of Siam Studies in Applied Mathematics. Siam, 1995. Zbl0823.34059 MR1316892 · Zbl 0823.34059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.