zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Learning to order things. (English) Zbl 0915.68031
Summary: There are many applications in which it is desirable to order rather than classify instances. Here we consider the problem of learning how to order instances given feedback in the form of preference judgments, i.e., statements to the effect that one instance should be ranked ahead of another. We outline a two-stage approach in which one first learns by conventional means a binary preference function indicating whether it is advisable to rank one instance before another. Here we consider an on-line algorithm for learning preference functions that is based on Freund and Schapire’s `Hedge’ algorithm. In the second stage, new instances are ordered so as to maximize agreement with the learned preference function. We show that the problem of finding the ordering that agrees best with a learned preference function is NP-complete. Nevertheless, we describe simple greedy algorithms that are guaranteed to find a good approximation. Finally, we show how metasearch can be formulated as an ordering problem, and present experimental results on learning a combination of ’search experts’, each of which is a domain-specific query expansion strategy for a web search engine.

68P10Searching and sorting
68M10Network design and communication of computer systems
Full Text: Link