zbMATH — the first resource for mathematics

Solving the Signorini problem on the basis of domain decomposition techniques. (English) Zbl 0915.73077
Summary: The finite element discretization of the Signorini problem leads to a large-scale constrained minimization problem. To improve the convergence rate of the projection method, a preconditioning must be developed. To be effective, the relative condition number of the system matrix with respect to the preconditioning matrix has to be small, and the applications of the preconditioner as well as the projection onto the set of feasible elements have to be fast computable. In this paper, we show how to construct and analyze such preconditioners on the basis of domain decomposition techniques. The numerical results obtained for Signorini problem as well as for contact problems in plane elasticity confirm the theoretical analysis.

74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
74A55 Theories of friction (tribology)
74M15 Contact in solid mechanics
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65K10 Numerical optimization and variational techniques
Full Text: DOI
[1] Benassi, M., White, R. E.: Parallel numerical solution of variational inequalities. SIAM J. Numer. Anal.31, 813–830 (1994). · Zbl 0810.65063 · doi:10.1137/0731044
[2] Braess, D., Hackbusch, W.: A new convergence proof for the multigrid method including the V-cycle. SIAM J. Numer. Anal.20, 967–975 (1983). · Zbl 0521.65079 · doi:10.1137/0720066
[3] Bramble, J. H., Pasciak, J. E.: A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comput.50, 1–17 (1988). · Zbl 0643.65017 · doi:10.1090/S0025-5718-1988-0917816-8
[4] Bramble, J. H., Pasciak, J. E., Xu. J.: Parallel multilevel preconditioners. Math. Comput.55, 1–22 (1990). · Zbl 0703.65076 · doi:10.1090/S0025-5718-1990-1023042-6
[5] Brezzi, F., Hager, W. W., Raviart, P. A.: Error estimates for the finite element solution of variational inequalities. Numer. Math.28, 431–443 (1977). · Zbl 0369.65030 · doi:10.1007/BF01404345
[6] Cheng, H.: Iterative solution of elliptic finite element problems on partially refined meshes and the effect of using inexact solvers. PhD thesis, New York University, Courant Institute of Mathematical Sciences, New York, 1993.
[7] Fichera, G.: Boundary value problems of elasticity with unilateral constraints. In: Handbuch der Physik – Encyclopedia of Physics, volume VI a/2 Festkörpermechanik II. Berlin, Heidelberg, New York: Springer 1972.
[8] Glowinski, R., Lions, J.-L., Trémolières, R.: Numerical analysis of variational inequalities. Amsterdam - New York - Oxford. North-Holland, 1981.
[9] Großmann, C., Roos, H. G.: Numerik partieller Differentialgleichunger. Stuttgart: Teubner, 1994. · Zbl 0822.65055
[10] Gwinner, J.: Finite-element convergence for contact problems in plane linear elastostatics. Math.50, 11–25 (1992). · Zbl 0743.73025
[11] Haase, G.: Hierarchial extension operators plus smoothing in domain decomposition preconditioners. Appl. Numer. Math.23, 327–346 (1997). · Zbl 0878.65106 · doi:10.1016/S0168-9274(96)00070-0
[12] Haase, G., Langer, U.: The non-overlapping domain decomposition multiplicative Schwarz method. Int. J. Comp. Math.44, 223–242 (1992). · Zbl 0758.65024 · doi:10.1080/00207169208804106
[13] Haase, G., Langer, U., Meyer, A.: The approximate Dirichlet domain decomposition method. Part I: An algebraic approach. Part II: Applications to 2nd-order elliptic boundary value problems. Computing47, 137–151, 153–167 (1991). · Zbl 0741.65091 · doi:10.1007/BF02253431
[14] Haase, G., Langer, U., Meyer, A., Nepomnyaschikh, S.V.: Hierarchial extension operators and local multigrid methods in domain decomposition preconditioners. East-West J. Numer. Math.2, 173–193 (1994). · Zbl 0849.65089
[15] Hackbusch, W., Mittelmann, H.: On multi-grid methods for variational inequalities. Numer. Math.42, 65–76 (1983). · Zbl 0497.65042 · doi:10.1007/BF01400918
[16] Han, H.: A direct boundary element method for Signorini problems. Math. Comp.55, 115–128 (1990). · Zbl 0705.65084 · doi:10.1090/S0025-5718-1990-1023048-7
[17] Haslinger, J., Hlaváček, I., Nečas, U.: Numerical methods for unilateral problems in solid mechanics. In: Handbook of numerical analysis, volume 2. Amsterdam: North-Holland, 1996.
[18] Hoffmann, K.-H., Zou, J.: Parallel algorithms of Schwarz variant for variational inequalities. Numer. Funct. Anal. Optim.13, 449–462 (1992). · Zbl 0759.65039 · doi:10.1080/01630569208816491
[19] Hoppe, R. H. W.: Multigrid algorithms for variational inequalities. SIAM J. Numer. Anal.24, 1046–1065 (1987). · Zbl 0628.65046 · doi:10.1137/0724069
[20] Hoppe, R. H. W., Kornhuber, R.: Adaptive multilevel methods for obstacle problems. SIAM. J. Numer. Anal.31, 301–323 (1994). · Zbl 0806.65064 · doi:10.1137/0731016
[21] Jung, M., Langer, U., Meyer, A., Queck, W., Schneider, M.: Multigrid preconditioners and their applications. In: Third multigrid seminar, Biesenthal 1988 (Telschow, G., ed.), p. 11–52. Berlin: Karl-Weierstrass-Institut, 1989. · Zbl 0699.65076
[22] Kikuchi, N., Oden, J. T.: Contact problems in elasticity: a study of variational inequalities and finite element methods. Philadelphia: SIAM 1988. · Zbl 0685.73002
[23] Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. New York: Academic Press 1980. · Zbl 0457.35001
[24] Lions, P.: On the Schwarz alternating method I. In: Glowinski, R., Golub, G. H., Meurant, G. A., Péiaux, J. (eds.) First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 1–42. SIAM, 1988.
[25] Mandel, J.: A multilevel iterative method for symmetric, positive definite linear complementarity problems. Appl. Math. Optim11, 77–95 (1984). · Zbl 0539.65046 · doi:10.1007/BF01442171
[26] Nepomnyaschikh, S. V.: Optimal multilevel extension operators. Preprint SPC 95_3, Technische Unviersität Chemnitz-Zwickau, Fakultät für Mathemaik, 1995.
[27] Schmitz, H., Schneider, G., Wendland, W.: Boundary element methods for problems involving unilateral boundary conditions. In: Wriggers, P., Wagner, W., eds. Nonlinear computational mechanics-state of the art, pp. 212–225. Berlin Heidelberg New York, Tokyo: Springer 1991.
[28] Signorini, A.: Sopra alcune questioni di elastostatics. Atti Soc. Ial. Progr. Sci., 1933. · JFM 59.1413.02
[29] Smith, B. F., Widlund, O.B.: A domain decomposition algorithm using a hierarchical basis. SIAM J. Sci. Stat. Comput.11, 1212–1220 (1990). · Zbl 0712.65101 · doi:10.1137/0911069
[30] Spann, W.: On the boundary element method for the Signorini problem of the Laplacian. Numer. Math.65, 337–356 (1993). · Zbl 0798.65106 · doi:10.1007/BF01385756
[31] Tao, L., Liem, C.-B., Shih, T.-M.: Parallel algorithms for variational inequalities based on domain decomposition. Syst. Sci. Math. Sci.4, 341–348 (1991). · Zbl 0786.49008
[32] Tong, C. H., Chan, T. F., Kuo, C. C. J.: A domain decomposition preconditioner based on a change to a multilevel nodal basis. SIAM J. Sci. Stat. Comp.12, 1486–1495 (1991). · Zbl 0744.65084 · doi:10.1137/0912082
[33] Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. New York: Wiley-Teubner, 1996. · Zbl 0853.65108
[34] Yserentant, H.: On the multi-level splitting of finite element spaces. Numer. Math.49, 379–412 (1986). · Zbl 0608.65065 · doi:10.1007/BF01389538
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.