Tangential decomposition. (English) Zbl 0916.65030

The tangential block decomposition for block-tridiagonal matrices is introduced, which is in many aspects similar to the ones being used in frequency filtering. In opposite to those methods, for the class of model problems this new approach does not use any test vectors for its implementation. Similar to many iterative methods, it needs only bounds for extremal eigenvalues. Theoretical properties of this scheme are similar to those for the ADI-method. Convergence analysis is given by test examples.


65F10 Iterative numerical methods for linear systems
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
Full Text: DOI


[1] Axelson, O., Polman, B.: A robust preconditioner based on algebraic substructuring and two-level grids. In: Robust multigrid methods (Hackbusch, W., ed.), pp. 1–26. NNFM Bd. 23. Braunschweig: Vieweg-Verlag 1989.
[2] Hackbusch, W.: Iterative solution of large sparse systems of equations. New York: Springer 1993. · Zbl 0861.65022
[3] Kettler, R.: Analysis and comparison of relaxation schemes in robust multigrid and preconditioned conjugate gradient methods. In: Multigrid methods, Proceedings, Köln-Porz, 1981 (Hackbusch, W., Trottenberg, V., eds.), pp. 502–534. Berlin Heidelberg, New York Tokyo: Springer.
[4] Samarskij, A. A., Nikolaev, E. S.: Numerical methods for grid equations. Vol. 2: Iterative methods. Basel: Birkhäuser 1989. · Zbl 0649.65054
[5] Varga, R.: Matrix iterative analysis. Englewood Cliffs: Prentice-Hall 1962. · Zbl 0133.08602
[6] Wagner, C.: Frequenzfilternde Zerlegungen für unsymmetrische Matrizen und Matrizen mit stark variierenden Koeffizienten. PhD Thesis, University of Stuttgart, 1995. · Zbl 0883.65028
[7] Wagner, C.: Tangential frequency filtering decompositions for symmetric matrices. Numer. Math.78, 143–163 (1997). · Zbl 0890.65031 · doi:10.1007/s002110050308
[8] Wittum, G.: Filternde Zerlegungen–Schnelle Löser für große Gleichungssysteme. Teubner Skripten zur Numerik, Band 1, Stuttgart: Teubner 1992. · Zbl 0748.65031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.