zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On some results of analysis for fuzzy metric spaces. (English) Zbl 0917.54010
Summary: A necessary and sufficient condition for a fuzzy metric space to be complete is given. The authors prove that a subspace of a separable fuzzy metric space is separable and every separable fuzzy metric space is second countable. A uniform limit theorem is generalized to fuzzy metric spaces.

54A40Fuzzy topology
54E50Complete metric spaces
54D65Separability (general topology)
Full Text: DOI
[1] Bachmann, G.; Narici, L.: Functional analysis. (1966) · Zbl 0141.11502
[2] Zi-Ke, Deng: Fuzzy pseudo-metric spaces. J. math. Anal. appl. 86, 74-95 (1982)
[3] Erceg, M. A.: Metric spaces in fuzzy set theory. J. math. Anal. appl. 69, 205-230 (1979) · Zbl 0409.54007
[4] George, A.; Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy sets and systems 64, 395-399 (1994) · Zbl 0843.54014
[5] Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy sets and systems 27, 385-389 (1989) · Zbl 0664.54032
[6] Kaleva, O.; Seikkala, S.: On fuzzy metric spaces. Fuzzy sets and systems 12, 215-229 (1984) · Zbl 0558.54003
[7] Kramosil, O.; Michalek, J.: Fuzzy metric and statistical metric spaces. Kybernetica 11, 326-334 (1975) · Zbl 0319.54002
[8] Munkres, J. R.: Topology -- A first course. (1991) · Zbl 0306.54001
[9] Schweizer, B.; Sklar, A.: Statistical metric spaces. Pacific J. Maths 10, 314-334 (1960) · Zbl 0091.29801
[10] Zadeh, L. A.: Fuzzy sets. Inform. and control 8, 338-353 (1965) · Zbl 0139.24606