×

Fibrations and classifying spaces: An axiomatic approach. II. (English) Zbl 0917.55009

[Part I: ibid. 39, No. 2, 83-116 (1998; Zbl 0906.55010).]
Etant donnée une classe \({\mathcal F}\) de fibrations, l’auteur s’intéresse à l’existence d’une \({\mathcal F}\)-fibration universelle de base un CW-complexe. Si l’on cherche à construire une telle fibration universelle à l’aide du théorème de représentabilité de Brown, on rencontre une difficulté technique due au fait que les fibrations de base donnée ne constituent pas un ensemble. L’auteur montre comment il est possible, sous certaines conditions sur la catégorie contenant les fibres de la classe considérée de fibrations, de contourner cette difficulté.
Reviewer: R.Cauty (Paris)

MSC:

55R10 Fiber bundles in algebraic topology

Citations:

Zbl 0906.55010
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] A.G. Allaud , On the classification of fiber spaces , Math. Z. 92 ( 1966 ), 110 - 125 . MR 189035 | Zbl 0139.16603 · Zbl 0139.16603
[2] B1 P.I. Booth , Local to global properties in the theory of fibrations , Cahiers de Topologie et Géométrie Différentielle Catégoriques , XXXIV - 2 ( 1993 ), 127 - 151 . Numdam | MR 1223656 | Zbl 0782.55006 · Zbl 0782.55006
[3] B2 P.I. Booth , Fibrations and classifying spaces: an axiomatic approach I, to appear , Cahiers de Topologie et Géométrie Différentielle Catégoriques. Numdam | MR 1631371 | Zbl 0906.55010 · Zbl 0906.55010
[4] B3 P.I. Booth , Fibrations and classifying spaces: overview and examples (to appear) . Numdam | Zbl 0991.55010 · Zbl 0991.55010
[5] B4 P.I. Booth , On the geometric bar construction and the Brown representability theorem, to appear , Cahiers de Topologie et Géométrie Différentielle Catégoriques . Numdam | MR 1663342 | Zbl 0926.55011 · Zbl 0926.55011
[6] BHM P.P. Booth , P. Heath , C. Morgan and R. Piccinini , H-spaces of self-equivalences of fibrations and bundles , Proc. London Math. Soc. 49 ( 1984 ), 111 - 124 . MR 743373 | Zbl 0525.55005 · Zbl 0525.55005
[7] BH P.P.I. Booth , P.R. Heath and R.A. Piccinini , Characterizing universal fibrations , Lecture Notes in Math. vol. 673 ( 1978 ), 168 - 184 , Springer-Verlag , Berlin . MR 517091 | Zbl 0392.55006 · Zbl 0392.55006
[8] D.A. Dold , Partitions of unity in the theory of fibrations , Ann. of Math. 78 ( 1963 ), 223 - 255 . MR 155330 | Zbl 0203.25402 · Zbl 0203.25402
[9] M.J.P. May , Classifying spaces and fibrations , Mem. Amer. Math. Soc. vol. 155 , Providence , 1975 . MR 370579 | Zbl 0321.55033 · Zbl 0321.55033
[10] S.E.H. Spanier , Algebraic Topology , McGraw-Hill , NewYork , 1966 . MR 210112 | Zbl 0145.43303 · Zbl 0145.43303
[11] V.R.M. Vogt , Convenient categories of topological spaces for homotopy theory , Arch. Math XXII ( 1971 ), 545 - 555 . MR 300277 | Zbl 0237.54001 · Zbl 0237.54001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.