×

A relationship between the periodic and the Dirichlet BVPs of singular differential equations. (English) Zbl 0918.34025

Author’s abstract: “A relationship between the periodic and the Dirichlet boundary value problem for second-order ordinary differential equations with singularities is established. This relationship may be useful in explaining the difference between the nonresonance of singular and nonsingular differential equations. Using this relationship, the author gives an existence result of positive periodic solutions to singular differential equations when the singular force satisfies some strong force condition at the singularity 0 and some linear growth condition at infinity”.

MSC:

34B15 Nonlinear boundary value problems for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1016/0362-546X(90)90037-H · Zbl 0708.34041
[2] DOI: 10.1016/0022-1236(89)90078-5 · Zbl 0681.70018
[3] Ding, Acta Sci. Natur. Univ. Pekinensis 11 pp 31– (1965)
[4] DOI: 10.1007/BF02418013 · Zbl 0353.46018
[5] del Pino, Proc. Roy. Soc. Edinburgh Sect. A 120 pp 231– (1992) · Zbl 0761.34031
[6] DOI: 10.1006/jdeq.1993.1050 · Zbl 0781.34032
[7] DOI: 10.1016/0362-546X(88)90035-1 · Zbl 0648.34050
[8] DOI: 10.2307/2154076 · Zbl 0748.34025
[9] Bevc, J. British Inst. Radio Engineers 18 pp 696– (1958)
[10] DOI: 10.1007/BF01773936 · Zbl 0642.58017
[11] Ambrosetti, Mem. Soc. Math. France 49, in Bull Soc. Math. France 120 pp 5– (1992)
[12] DOI: 10.1007/BFb0085076
[13] Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems (1979) · Zbl 0414.34025
[14] DOI: 10.1007/BF00375608 · Zbl 0782.70010
[15] Majer, Ann. Inst. H. Poincaré Anal. Non Lineaire 8 pp 459– (1991) · Zbl 0749.58046
[16] DOI: 10.1090/S0002-9939-1987-0866438-7
[17] Habets, Differential Integral Equations 3 pp 1139– (1990)
[18] Habets, Proc. Amer. Math. Soc. 109 pp 1035– (1990)
[19] DOI: 10.1090/S0002-9947-1975-0377983-1
[20] DOI: 10.1137/0524074 · Zbl 0787.34035
[21] DOI: 10.1006/jdeq.1993.1093 · Zbl 0785.34033
[22] DOI: 10.1006/jmaa.1997.5338 · Zbl 0880.70008
[23] DOI: 10.1006/jmaa.1996.0378 · Zbl 0863.34039
[24] Ye, Acta Math. Appl. Sinica 1 pp 13– (1978)
[25] DOI: 10.1216/RMJ-1982-12-4-643 · Zbl 0536.34022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.