×

zbMATH — the first resource for mathematics

Heat and harmonic extensions for function spaces of Hardy-Sobolev-Besov type on symmetric spaces and Lie groups. (English) Zbl 0918.43007
Spaces of Hardy-Sobolev-Besov type \(B^s_{pq}\) and \(F^s_{pq}\) on (special) Riemannian manifolds and Lie groups are usually introduced via local charts. It is the aim of this paper to characterize these spaces intrinsically via heat and Poisson semigroups. Atomic decompositions of these spaces are the main tool.
Reviewer: H.Triebel (Jena)

MSC:
43A85 Harmonic analysis on homogeneous spaces
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
22E30 Analysis on real and complex Lie groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anker, J.Ph., Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke math. J., 65, 257-297, (1992) · Zbl 0764.43005
[2] Cowling, M.; Grulini, S.; Meda, S., L^{p}−lqestimates for functions of the laplace- Beltrami operator noncompact symmetric spaces, I, Duke math. J., 72, 109-150, (1993)
[3] Davies, E.B., Heat kernels and spectral theory, (1989), Cambridge Univ. Press Cambridge · Zbl 0699.35006
[4] Eguchi, M., Asymptotic expansions of Eisenstein integrals and Fourier transform on symmetric spaces, J. funct. anal., 34, 164-216, (1979)
[5] Frazier, M.; Jawerth, B., A discrete transform and decomposition of distribution spaces, J. funct. anal., 93, 34-170, (1990) · Zbl 0716.46031
[6] Helgason, S., Groups and geometric analysis. integral geometry, invariant differential operators, and spherical functions, (1984), Academic Press Diego · Zbl 0543.58001
[7] Helgason, S., Geometric analysis on symmetric spaces, Math. surveys monogr., 39, (1992), Am. Math. Soc Providence
[8] Li, P.; Schoen, R., L^{p}and mean valued properties of subharmonic functions on Riemannian manifolds, Acta math., 153, 279-301, (1984) · Zbl 0556.31005
[9] Saloff-Coste, L., Uniformly elliptic operators on Riemannian manifolds, J. differential geom., 36, 417-450, (1992) · Zbl 0735.58032
[10] Shubin, M.A., Spectral theory of elliptic operators on non-compact manifolds, Astérisque, 207, 37-108, (1992) · Zbl 0793.58039
[11] Skrzypczak, L., Atomic decompositions on manifolds with bounded geometry, Forum math., 10, 19-38, (1998) · Zbl 0907.46031
[12] Skrzypczak, L., Heat semi-group and function spaces on symmetric spaces of the noncompact type, Z. anal. andwendringen, 15, 881-899, (1996) · Zbl 0868.46025
[13] Skrzypczak, L., Some equivalent norms in Sobolev and Besov spaces on symmetric manifolds, J. London math. soc., 53, 569-581, (1996) · Zbl 0857.46023
[14] Skrzypczak, L., The triebel – lizorkin scale of function spaces for fourier – helgason transform, Math. nachr., 190, 251-274, (1998) · Zbl 0913.46035
[15] Stein, E., Singular integrals and differential properties of functions, (1970), Princeton Univ. Press Princeton
[16] Strichartz, R.S., Analysis of the Laplacian on a complete Riemannian manifold, J. funct. anal., 52, 48-79, (1983) · Zbl 0515.58037
[17] Triebel, H., Characterizations of besov – hardy – sobolev spaces via harmonic functions, temperatures and related means, J. approx. theory, 35, 275-297, (1982) · Zbl 0487.46013
[18] Triebel, H., Characterizations of function spaces on a complete Riemannian manifold with bounded geometry, Math. nach., 130, 321-346, (1987) · Zbl 0637.46035
[19] Triebel, H., How to measure smoothness of distributions on Riemannian symmetric manifolds and Lie groups, Z. ana. andwendringen, 7, 471-480, (1988) · Zbl 0685.46020
[20] Triebel, H., Spaces of besov – hardy – sobolev type on complete Riemannian manifolds, Arkiv mat., 24, 300-337, (1986) · Zbl 0664.46026
[21] Triebel, H., Theory of function spaces, (1983), Birkhäuser Basel · Zbl 0546.46028
[22] Triebel, H., Theory of function spaces, II, (1992), Birkhäuser Basel · Zbl 0778.46022
[23] Varopoulos, N.Th., Analysis on Lie groups, J. funct. anal., 76, 346-410, (1988) · Zbl 0634.22008
[24] Varopoulos, N.Th.; Saloff-Coste, L.; Coulhon, T., Analysis and geometry on groups, (1992), Cambridge Univ. Press Cambridge · Zbl 0813.22003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.