Separating maps and linear isometries between some spaces of continuous functions. (English) Zbl 0918.46026

For a given locally compact Hausdorff space \(X\), a Banach space \(E\) and a function \(\sigma: X\to (0,\infty)\) satisfying certain conditions, the author defines the Banach space \(C^\sigma_0(X,E)\) of continuous functions from \(X\) into \(E\). An additive map \(T: C^\sigma_0(X, E)\to C^\tau_0(Y, F)\) between two such Banach spaces is said to be separating if whenever \(f,g\in C^\sigma_0(X,E)\) satisfy \(\| f(x)\| \| g(x)\|= 0\) for every \(x\in X\), then \(\|(Tf)(y)\| \|(Tg)(y)\|= 0\) for every \(y\in Y\). \(T\) is said to be biseparating if it is bijective and both \(T\) and \(T^{-1}\) are separating. The author proves that the existence of a biseparating map \(T: C^\sigma(X, E)\to C^\tau_0(Y, F)\) implies that the spaces \(X\) and \(Y\) are homeomorphic.


46E15 Banach spaces of continuous, differentiable or analytic functions
46B04 Isometric theory of Banach spaces
Full Text: DOI


[2] Araujo, J.; Beckenstein, E.; Narici, L., Biseparating maps and homeomorphic realcompactifications, J. Math. Anal. Appl., 192, 258-265 (1995) · Zbl 0828.47024
[3] Araujo, J.; Beckenstein, E.; Narici, L., When is a separating map biseparating?, Arch. Math., 67, 395-407 (1996) · Zbl 0858.54022
[4] Araujo, J.; Font, J. J., Linear isometries between subspaces of continuous functions, Trans. Amer. Math. Soc., 349, 413-428 (1997) · Zbl 0869.46014
[5] Beckenstein, E.; Narici, L.; Todd, A. R., Automatic continuity of linear maps on spaces of continuous functions, Manuscripta Math., 62, 257-275 (1988) · Zbl 0666.46018
[6] Font, J. J.; Hernández, S., On separating maps between locally compact spaces, Arch. Math., 63, 158-165 (1994) · Zbl 0805.46049
[7] Hernández, S.; Beckenstein, E.; Narici, L., Banach-Stone theorems and separating maps, Manuscripta Math., 86, 409-416 (1995) · Zbl 0827.46032
[8] Jarosz, K., Automatic continuity of separating linear isomorphisms, Canad. Math. Bull., 33, 139-144 (1990) · Zbl 0714.46040
[9] Jarosz, K.; Pathak, V. D., Isometries and small bound isomorphisms of function spaces, Lecture Notes in Pure and Appl. Math. (1992), Dekker: Dekker New York · Zbl 0804.46030
[10] Jeang, J.-S.; Wong, N.-C., Weighted composition operators of \(C_0X\), J. Math. Anal. Appl., 201, 981-993 (1996) · Zbl 0936.47011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.