×

Hard ball systems are completely hyperbolic. (English) Zbl 0918.58040

The authors consider the system of \(N(\geq 2)\) elastically colliding hard balls with masses \(m_1, \dots,m_N\), radius \(r\), moving uniformly in the flat torus \(\mathbb{T}^\nu_L= \mathbb{R}^\nu/L\cdot\mathbb{Z}^\nu\), \(\nu\geq 2\). It is proved here that the relevant Lyapunov exponents of the flow do not vanish for almost every \((N+1)\)-tuple \((m_1, \dots, m_N;L)\) of the outer geometric parameters.

MSC:

37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
37A25 Ergodicity, mixing, rates of mixing
37A60 Dynamical aspects of statistical mechanics
37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010)
70H05 Hamilton’s equations
PDF BibTeX XML Cite
Full Text: DOI arXiv EuDML Link