×

zbMATH — the first resource for mathematics

Global and domain-decomposed mixed methods for the solution of Maxwell’s equations with application to magnetotellurics. (English) Zbl 0918.65083
Numerical procedures are presented to solve the direct problem in magnetotellurics consisting of determining the electromagnetic field induced inside the earth when a plane monochromatic wave arrives normally to the earth’s surface. It is assumed that the earth can be modelled as a horizontally layered body with a two-dimensional inhomogenity. A collection of numerical procedures is used to solve the harmonic Maxwell equation in its original form as a first-order system of partial differential equations for the electric and magnetic fields. Discontinuities in the conductivity are handled without introducing numerical complexity. The algorithms are global mixed and global hybridized mixed finite element procedures.
Reviewer: V.Burjan (Praha)

MSC:
65Z05 Applications to the sciences
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
78A25 Electromagnetic theory, general
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35Q60 PDEs in connection with optics and electromagnetic theory
86A25 Geo-electricity and geomagnetism
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arnold, R.A.I.R.O. Modélisation Mathématique et Analyse Numérique 19 pp 7– (1985)
[2] Brezzi, Numer. Math. 47 pp 217– (1985)
[3] Coggon, Geophysics 36 pp 132– (1971)
[4] and , ”Parallel domain decomposition method for mixed finite elements for elliptic partial differential equations,” in Proceedings of the Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, , , , and , eds. SIAM, Philadelphia, 1991.
[5] ”Méthodes de décomposition de domaines pour les problèmes de propagation d’ondes en régime harmonique,” Ph.D. thesis, Université Paris IX Dauphine, UER Mathématiques de la Décision 1991.
[6] , and , ”Domain decomposition method for the harmonic Maxwell’s equations,” in Proceedings of the IMACS International Symposium on Iterative Methods in Linear Algebra, Elsevier, North Holland, 1990.
[7] Douglas, Math. Comput. 44 pp 39– (1985)
[8] Douglas, Numer. Math. 65 pp 95– (1993)
[9] Duran, Numerical Methods for Partial Differential Equations 4 pp 167– (1990)
[10] Ewing, R.A.I.R.O. Modélisation Mathématique et Analyse Numérique 26 pp 739– (1992)
[11] ”Displacement and equilibrium models in the finite element method,” in Stress Analysis, and , eds. Wiley, New York, 1965.
[12] ”Stress function approach,” International Congress on the Finite Element Method in Structural Mechanics, Bournemouth, 1975.
[13] and , Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986. · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[14] , and , ”Acceleration of domain decomposition algorithms for mixed finite elements by multi-level methods,” in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, ed., pages 263-290, SIAM, Philadelphia 1990.
[15] and , ”Domain decomposition and mixed finite element methods for elliptic problems,” in Domain Decomposition Methods for Partial Differential Equations, , , and , eds., pages 144-172. SIAM, Philadelphia, 1988.
[16] and , The Magnetotelluric Sounding Method, vol. 15, Methods in Geochemistry and Geophysics, Elsevier, New York, 1986.
[17] Lee, Geophysics 50 pp 466– (1985)
[18] ”On the Schwarz alternating method I,” in Domain Decomposition Methods for Partial Differential Equations, , , and , eds., pages 1-42, SIAM, Philadelphia, PA, 1988.
[19] ”On the Schwarz alternating method III: a variant for nonoverlapping subdomains,” in Domain Decomposition Methods for Partial Differential Equations, , , and , eds., pages 202-223, SIAM, Philadelphia, PA, 1990.
[20] Mackie, Geophysics 58 pp 215– (1993)
[21] Monk, SIAM J. Numer. Anal. 28 pp 1610– (1991)
[22] Monk, SIAM J. Sci. Stat Comput 13 (1992)
[23] Monk, Numer. Math. 63 pp 243– (1992)
[24] Monk, J. Comp. and Appl. Math. 47 pp 101– (1993)
[25] Nedelec, Numer. Math. 35 pp 315– (1980)
[26] Prospección Geoeléctrica por Campos Variables, Paraninfo, Madrid, 1974.
[27] and , ”A mixed finite element method for second order elliptic problems,” in Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics, volume606, pages 292-315, Springer-Verlag, Berlin, New York, 1977, and , eds.
[28] and , ”On the existence and uniqueness of Maxwell’s equations in bounded domains with application to magnetotellurics,” Technical Report #281, Center for Applied Mathematics, Purdue University, April 1996, submitted to Mathematical Models and Methods in the Applied Sciences.
[29] Sheen, SIAM J. Appl. Math. 57 pp 1716– (1997)
[30] Sheen, Appl. Math. Lett. 5 pp 95– (1992)
[31] ”Sur l’ analyse numérique des methodes d’éléments finis hybrides et mixtes,” Ph.D. thesis, Université Pierre-et-Marie Curie, Paris, 1977.
[32] Travis, Physics of the Earth and Planetary Interiors 53 pp 432– (1989)
[33] Wannamaker, Geophys. J. R. Astr. Soc. 88 pp 277– (1987) · doi:10.1111/j.1365-246X.1987.tb01380.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.