Andruskiewitsch, N.; Schneider, H.-J. Lifting of quantum linear spaces and pointed Hopf algebras of order \(p^3\). (English) Zbl 0919.16027 J. Algebra 209, No. 2, 658-691 (1998). Let \(k\) be an algebraically closed field of characteristic zero. Let \(A\) be a noncosemisimple Hopf algebra over \(k\) whose coradical \(A_0\) is a Hopf subalgebra, e.g., if \(A\) is pointed. Let \(\text{gr }A\) be the graded Hopf algebra associated to the coradical filtration of \(A\), \(\pi\) the projection of \(\text{gr }A\) on \(A_0\). Then \(R=\{a\) in \(\text{gr }A:(I\otimes\pi)\Delta a=a\otimes 1\}\), the coinvariants of \(\pi\), is a Hopf algebra in the braided category of Yetter-Drinfeld modules over \(A_0\). \(\text{gr }A\) can be recovered from \(R\) by bosonization (biproduct with \(A_0\)). The authors propose to study \(A\) by first studying \(R\), transferring the information to \(\text{gr }A\), and then lifting to \(A\). In this article, they apply this plan when \(R\) is a quantum linear space. This enables them to classify all pointed Hopf algebras of order \(p^3\), \(p\) an odd prime, and also to classify all pointed Hopf algebras whose coradical is Abelian and has index \(p\) or \(p^2\). Their lifting results then enable them to produce an infinite family of pointed, nonisomorphic Hopf algebras of dimension \(p^4\). This answers in the negative a conjecture of Kaplansky.Reviewer’s remark: This conjecture has also been answered recently by other authors using different constructions. Reviewer: E.J.Taft (New Brunswick) Cited in 25 ReviewsCited in 145 Documents MSC: 16W30 Hopf algebras (associative rings and algebras) (MSC2000) 16W50 Graded rings and modules (associative rings and algebras) Keywords:noncosemisimple Hopf algebras; coradicals; graded Hopf algebras; coradical filtrations; braided categories; Yetter-Drinfeld modules; quantum linear spaces; pointed Hopf algebras of order \(p^3\); Hopf algebras of dimension \(p^4\) × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Andruskiewitsch, N., Notes on extensions of Hopf algebras, Canad. J. Math., 48, 3-42 (1996) · Zbl 0857.16033 [2] Andruskiewitsch, N.; Schneider, H.-J, Simplicity of some pointed Hopf algebras, Appendix, Canad. J. Math., 48, 3-42 (1996) · Zbl 0857.16033 [3] Andruskiewitsch, N.; Schneider, H.-J, Hopf Algebras of order \(p^2p\), J. Algebra, 199, 430-454 (1998) · Zbl 0899.16019 [4] N. Andruskiewitsch, H.-J. Schneider, On Hopf Algebras whose coradical is a Hopf subalgebra; N. Andruskiewitsch, H.-J. Schneider, On Hopf Algebras whose coradical is a Hopf subalgebra · Zbl 1006.16047 [5] Bergman, G., The diamond lemma for ring theory, Adv. Math., 29, 178-218 (1978) · Zbl 0326.16019 [6] M. Beattie, S. Dascalescu, L. Grünenfelder, On the number of types of finite-dimensional Hopf algebras, Inventiones Math; M. Beattie, S. Dascalescu, L. Grünenfelder, On the number of types of finite-dimensional Hopf algebras, Inventiones Math · Zbl 0922.16021 [7] Bourbaki, N., Algébre commutative. Charitre III (1961), Hermann [8] S. Caenepeel, S. Dascalescu, Pointed Hopf algebras of dimension \(p^3\); S. Caenepeel, S. Dascalescu, Pointed Hopf algebras of dimension \(p^3\) · Zbl 0917.16016 [9] Chin, W.; Musson, I., The coradical filtration for quantized universal enveloping algebras, J. London Math. Soc., 53, 50-67 (1996) · Zbl 0860.17013 [10] S. Gelaki, On pointed Hopf algebras and Kaplansky’s tenth conjecture, J. Algebra; S. Gelaki, On pointed Hopf algebras and Kaplansky’s tenth conjecture, J. Algebra · Zbl 0922.16023 [11] Kaplansky, I., Bialgebras (1975), University of Chicago: University of Chicago Chicago · Zbl 1311.16029 [12] Larson, R. G.; Radford, D. E., Finite dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple, J. Algebra, 117, 267-289 (1988) · Zbl 0649.16005 [13] Lusztig, G., Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc., 3, 257-296 (1990) · Zbl 0695.16006 [14] Lusztig, G., Quantum groups at roots of 1, Geom. Dedicata, 35, 89-114 (1990) · Zbl 0714.17013 [15] Majid, S., Crossed products by braided groups and bosonization, J. Algebra, 163, 165-190 (1994) · Zbl 0807.16036 [16] Masuoka, A., Self dual Hopf algebras of dimension \(p^3\), J. Algebra, 178, 791-806 (1995) · Zbl 0840.16031 [17] Masuoka, A., The\(p^n\)theorem for semisimple Hopf algebras, Proc. Amer. Math. Soc., 124, 735-737 (1996) · Zbl 0848.16033 [18] Montgomery, S., Hopf Algebras and Their Actions on Rings (1993), Am. Math. Soc: Am. Math. Soc Providence · Zbl 0804.16041 [19] Nichols, W. D., Bialgebras of type one, Commun. Alg., 6, 1521-1552 (1978) · Zbl 0408.16007 [20] Nichols, W. D.; Zoeller, M. B., A Hopf algebra freeness theorem, Amer. J. Math., 111, 381-385 (1989) · Zbl 0672.16006 [21] Oberst, U.; Schneider, H.-J, Über Untergruppen endlicher algebraischer Gruppen, Manuscripta Math., 8, 217-241 (1973) · Zbl 0259.20043 [22] Radford, D., On the coradical of a finite dimensional Hopf algebra, Proc. Amer. Math. Soc., 53, 9-15 (1975) · Zbl 0324.16009 [23] Radford, D., The order of the antipode of a finite dimensional Hopf algebra is finite, Amer. J. Math., 98, 333-355 (1976) · Zbl 0332.16007 [24] Radford, D., Hopf algebras with projection, J. Algebra, 92, 322-347 (1985) · Zbl 0549.16003 [25] H.-J. Schneider, Finiteness results for semisimple Hopf algebras; H.-J. Schneider, Finiteness results for semisimple Hopf algebras [26] Stefan, D., The set of types of \(n\), J. Algebra, 193, 571-580 (1997) · Zbl 0882.16029 [27] D. Stefan, F. van Oystaeyen, Hochschild cohomology and coradical filtration of pointed Hopf algebras, 1997; D. Stefan, F. van Oystaeyen, Hochschild cohomology and coradical filtration of pointed Hopf algebras, 1997 · Zbl 0918.16030 [28] Sweedler, M., Hopf Algebras (1969), Benjamin: Benjamin New York · Zbl 0194.32901 [29] Taft, E.; Wilson, R. L., On antipodes in pointed Hopf algebras, J. Algebra, 29, 27-32 (1974) · Zbl 0282.16008 [30] Takeuchi, M., Some topics on\(GL_q}(n\), J. Algebra, 147, 379-410 (1992) · Zbl 0760.16015 [31] Zhu, Y., Hopf algebras of prime dimension, Int. Math. Res. Notes, 1, 53-59 (1994) · Zbl 0822.16036 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.