zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos in singular impulsive O. D. E. (English) Zbl 0919.34016
The authors establish conditions under which the Poincaré map for the periodic impulsive system $$\varepsilon x'=f(x) + \varepsilon h(x), \ x(+i) - x(i-) = \varepsilon g(x(i-)), \quad x \in \bbfR^m, \ i \in \bbfZ,$$ has a transversal homoclinic point for all small $\varepsilon >0$ [see {\it M. Fečkan}, Boll. Unione Mat. Ital., VII. Ser. B 10, No. 1, 175-198 (1996; Zbl 0863.34016)].

MSC:
34A37Differential equations with impulses
34C28Complex behavior, chaotic systems (ODE)
34E15Asymptotic singular perturbations, general theory (ODE)
34C37Homoclinic and heteroclinic solutions of ODE
WorldCat.org
Full Text: DOI
References:
[1] Smale, S.: Differentiable dynamical systems. Bull. am. Math. soc. 73, 747-817 (1967) · Zbl 0202.55202
[2] Guckenheimer, J.; Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. (1983) · Zbl 0515.34001
[3] Battelli, F.; Lazzari, C: Exponential dichotomies, heteroclinic orbits and Melnikov functions. J. diff. Eqns 86, 342-366 (1990) · Zbl 0713.34055
[4] Chow, S.N.; Hale, J.K.; Mallet-Paret, J.: An example of bifurcation to homoclinic orbits. J. diff. Eqns 37, 351-373 (1980) · Zbl 0439.34035
[5] Palmer, K.J.: Exponential dichotomies and transversal homoclinic points. J. diff. Eqns 55, 225-256 (1984) · Zbl 0508.58035
[6] Battelli, F.: Perturbing diffeomorphisms which have heteroclinic orbits with semi-hyperbolic fixed points. Dynam. sys. Appl. 3, 305-332 (1994) · Zbl 0807.58034
[7] Fečkan, M.: Bifurcations of heteroclinic orbits for diffeomorphisms. Appl. math. 36, 355-367 (1991) · Zbl 0748.58022
[8] Fečkan, M.: On the existence of chaotic behaviour of diffeomorphism. Appl. math. 38, 101-122 (1993) · Zbl 0789.58056
[9] Battelli, F.; Lazzari, C.; Bounded, solutions to singularly perturbed systems of O.D.E.: J. diff. Eqns. 100, 49-81 (1992) · Zbl 0762.34035
[10] Fečkan, M.: Melnikov functions for singularly perturbed ordinary differential equations. Nonlinear analysis 19, 393-401 (1992) · Zbl 0765.34035
[11] Fečkan M., Chaos in singularly perturbed impulsive O.D.E., Boll. Un. mat. Ital. (to appear).
[12] Battelli, F.; Palmer, K.J.: Chaos in the Duffing equation. J. diff. Eqns 101, 276-301 (1993) · Zbl 0772.34040
[13] Battelli, F.; Lazzari, C.: Generalized Melnikov functions and existence of bounded solutions in systems with parameters. Advanced topics in the theory of dynamical systems, 11-25 (1989) · Zbl 0677.34038
[14] Palmer, K.J.: Exponential dichotomies, the shadowing lemma and transversal homoclinic points. Dyn. rep. 1, 265-306 (1988) · Zbl 0676.58025
[15] Feckan M., Note on a local invertibility, Math. Slov. (to appear). · Zbl 0977.34042