×

Multibump solutions for a class of Lagrangian systems slowly oscillating at infinity. (English) Zbl 0919.34044

The authors study the existence of infinitely many solutions homoclinic to the origin \(u=0\), \(\dot u=0\), to a class of second-order Lagrangian systems of the form \[ -\ddot u+u =\alpha (t)W(u), \qquad u\in \mathbb{R}^n,\quad t\in \mathbb{R}. \tag{1} \] It is assumed that
(1) \(\alpha\in C^1(\mathbb{R},\mathbb{R})\), \(W\in C^2(\mathbb{R}^n,\mathbb{R})\),
(2) there exists \(\theta >2\) such that \(0<\theta W(x)\leq \nabla W(x)x\) for any \(x\in \mathbb{R}^n\setminus \{0\}\),
(3) \(\nabla W(x)x<{\nabla}^2 W(x)xx\) for any \( x\in \mathbb{R}^n\setminus \{0\}\),
(4) there exist \(\overline{a}\) and \(\underline{a}>0\) such that \(\overline{a}\geq \alpha (t) \geq \underline{a}>0\) for any \(t\in \mathbb{R}\),
(5) \(\underline{\alpha}=\liminf _{t\to +\infty}\alpha (t)< \limsup _{t\to +\infty}\overline{\alpha} (t)=\overline{\alpha}\) and \(\lim _{t\to +\infty}\dot{\alpha} (t)=0\).
The main result is the following theorem: If hypotheses (1)–(5) hold then equation (1) admits infinitely many so-called multibump solutions. More precisely, there exist \(\bar\delta >0\), a sequence of disjoint intervals \(Q_{j}\) in \(\mathbb{R}^+\) with \(| Q_{j}| \to +\infty\), and an increasing sequence of indices \((\hat \jmath _n)\) such that given any increasing sequence of indices \((j_n)\) with \(j_i\geq \hat\jmath _i\) \((i\in \mathbb{N})\) and \(\sigma\in\{ 0,1\}^\mathbb{N}\) there exists a solution \(u_{j,\sigma}\in C^2(\mathbb{R},\mathbb{R}^n)\) to equation (1) verifying: \[ | u_{j,\sigma}| < {\overline{\delta}\over 2} \text{ for all }t\in \mathbb{R}\setminus\bigcup _{\{i| \sigma _{i}=1\}}Q_{j_{i}}, \qquad\| u_{j,\sigma}\| _{L^{\infty}(Q_{j_{i}})}\geq \overline\delta \text{ if }\sigma _i=1. \] \(u_{j,\sigma}\) is a homoclinic solution to equation (1) whenever \(\sigma _i=0\) definitely.
The proof uses variation techniques and is based on a localization procedure related to the time dependence of the Lagrangian.

MSC:

34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
37D99 Dynamical systems with hyperbolic behavior
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
70H05 Hamilton’s equations

References:

[1] Alessio, F., Homoclinic solutions for second order systems with expansive time dependence (1996), preprint · Zbl 0881.34067
[2] A. Ambrosetti, M. BadialeS. CingolaniArch. Rat. Mech. Anal.; A. Ambrosetti, M. BadialeS. CingolaniArch. Rat. Mech. Anal.
[3] Ambrosetti, A.; Bertotti, M. L., Homoclinics for second order conservative systems, Partial differential equation and related subjects, (Miranda, M., Pitman Research Notes. Pitman Research Notes, Math. Ser. (1992)) · Zbl 0804.34046
[4] Ambrosetti, A.; Coti Zelati, V., Multiple homoclinic orbits for a class of conservative systems, Rend. Sem. Mat. Padova, Vol. 89, 177-194 (1993) · Zbl 0806.58018
[5] Bessi, U., A Variational Proof of a Sitnikov-like Theorem, Nonlinear Anal. TMA, Vol. 20, 1303-1318 (1993) · Zbl 0778.34036
[6] Bertotti, M. L.; Bolotin, S., A variational approach for homoclinics in almost periodic Hamiltonian systems, Comm. Appl. Nonlinear Analysis, Vol. 2, 43-57 (1995) · Zbl 0858.34039
[7] Bolotin, S., Existence of homoclinic motions, Vestnik Moskov. Univ. Ser. I Mat. MeKh., Vol.6, 98-103 (1980)
[8] Buffoni, B.; Séré, E., A global condition for quasi random behaviour in a class of conservative systems (1995), preprint · Zbl 0860.58027
[9] Caldiroli, P.; Montecchiari, P., Homoclinics orbits for second order Hamiltonian systems with potential changing sign, Comm. Appl. Nonlinear Analysis, Vol. 1, 97-129 (1994) · Zbl 0867.70012
[10] Caldiroli, P.; Montecchiari, P.; Nolasco, M., Asymptotic behaviour for a class of multibump solutions to Duffing-like systems, (Proc. of the Workshop on Variational and Local Methods in the study of Hamiltonian systems (1995), World Scientific) · Zbl 0951.37013
[11] K. CieliebakE. SéréDuke Math. Journ.; K. CieliebakE. SéréDuke Math. Journ.
[12] Coti Zelati, V.; Ekeland, I.; Séré, E., A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., Vol. 288, 133-160 (1990) · Zbl 0731.34050
[13] V. Coti Zelati, P. MontecchiariM. Nolasco; V. Coti Zelati, P. MontecchiariM. Nolasco · Zbl 0878.34045
[14] Coti Zelati, V.; Rabinowitz, P. H., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., Vol. 4, 693-727 (1991) · Zbl 0744.34045
[15] M. Del PinoP. L. FelmerAnn. IHP Anal. Nonlinéaire; M. Del PinoP. L. FelmerAnn. IHP Anal. Nonlinéaire
[16] Gui, C., Existence of multi-bump solutions for nonlinear Schrödinger equations via variational methods, Comm. in PDE, Vol. 21, 787-820 (1996) · Zbl 0857.35116
[17] Hofer, H.; Wysocki, K., First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann., Vol. 228, 483-503 (1990) · Zbl 0702.34039
[18] Lions, P. L., The concentration-compactness principle in the calculus of variations, (The locally compact case, part 1., part 2. The locally compact case, part 1., part 2, Ann.IHP Anal. Nonlinéaire, Vol. 1 (1984)), 223-283 · Zbl 0704.49004
[19] Miranda, C., Un’osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., Vol. 3, 5-7 (1940) · JFM 66.0217.01
[20] Montecchiari, P., Existence and multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian systems, Ann. Mat. Pura Appl. (IV), Vol. 168, 317-354 (1995) · Zbl 0849.34035
[21] P. Montecchiari, M. NolascoS. Terracini; P. Montecchiari, M. NolascoS. Terracini · Zbl 0886.58014
[22] Montecchiari, P.; Nolasco, M.; Terracini, S., A global condition for periodic Duffing-like equations (1995), SISSA, preprint
[23] Rabinowitz, P. H., Homoclinic orbits for a class of Hamiltonian systems, (Proc. Roy. Soc. Edinburgh, Vol. 114 A (1990)), 33-38 · Zbl 0705.34054
[24] Rabinowitz, P. H., Multibump solutions for an almost periodically forced singular Hamiltonian system (1995), preprint · Zbl 0828.34034
[25] Rabinowitz, P. H., A multibump construction in a degenerate setting (1996), preprint · Zbl 0876.34055
[26] Rabinowitz, P. H.; Tanaka, K., Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., Vol 206, 473-479 (1991) · Zbl 0707.58022
[27] Séré, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit., Vol. 209, 27-42 (1991) · Zbl 0725.58017
[28] Séré, E., Looking for the Bernoulli shift, Ann. IHP Anal. Nonlinéaire, Vol. 10, 561-590 (1993) · Zbl 0803.58013
[29] E. Serra, M. TaralloS. TerraciniAnn. IHP Anal. Nonlinéaire; E. Serra, M. TaralloS. TerraciniAnn. IHP Anal. Nonlinéaire · Zbl 0873.58032
[30] Wiggins, S., Global bifurcation and chaos, (Applied Mathematical Sciences, Vol. 73 (1988), Springer-Verlag) · Zbl 0870.70019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.