Birindelli, Isabeau; Mitidieri, Enzo Liouville theorems for elliptic inequalities and applications. (English) Zbl 0919.35023 Proc. R. Soc. Edinb., Sect. A, Math. 128, No. 6, 1217-1247 (1998). The authors prove results on nonexistence of \(C^2\) solutions to systems of semilinear elliptic polyharmonic inequalities in cones or, under better conditions on the nonlinearity, of bounded positive solutions to semilinear elliptic equations in half spaces. Using the previous results a blow-up argument allows to prove a priori bounds for solutions of a class of semilinear elliptic systems in bounded domains. Reviewer: Marco Biroli (Monza) Cited in 40 Documents MSC: 35B45 A priori estimates in context of PDEs 35J60 Nonlinear elliptic equations 35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs Keywords:nonexistence; bounded positive solutions PDF BibTeX XML Cite \textit{I. Birindelli} and \textit{E. Mitidieri}, Proc. R. Soc. Edinb., Sect. A, Math. 128, No. 6, 1217--1247 (1998; Zbl 0919.35023) Full Text: DOI References: [1] DOI: 10.1002/cpa.3160470105 · Zbl 0806.35129 [2] Caristi, Adv. Differential Equations 2 pp 319– (1997) [3] Berestycki, C. R. Acad. Sci. Paris Sér. I Math. 317 pp 945– (1993) [4] DOI: 10.1002/cpa.3160120405 · Zbl 0093.10401 [5] Treves, Basic Linear Partial Differential Equations (1975) · Zbl 0305.35001 [6] Souto, Differential Integral Equations 8 pp 1245– (1995) [7] Serrin, Differential Integral Equations 9 pp 635– (1996) [8] Nicolescu, Les fonctions polyharmoniques (1936) [9] Mitidieri, Differential Integral Equations 9 pp 465– (1996) [10] Gilbarg, Elliptic Partial Differential Equations of Second Order (1983) · Zbl 0361.35003 [11] DOI: 10.1080/03605308108820196 · Zbl 0462.35041 [12] de Figueiredo, Ann. Scuola Norm. Cl. Sci. 4 pp 387– (1992) [13] DOI: 10.1002/cpa.3160340406 · Zbl 0465.35003 [14] DOI: 10.1017/S0004972700012089 · Zbl 0777.35005 [15] DOI: 10.1080/03605309308821005 · Zbl 0802.35044 [16] Clément, Nonlinear Partial Differential Equations 343 pp 3– (1996) [17] Berestycki, Topol. Methods Nonlinear Anal. 4 pp 59– (1995) · Zbl 0816.35030 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.