×

Scattering estimates for a time dependent matricial Klein-Gordon operator. (Estimations de diffusion pour un opérateur de Klein-Gordon matriciel dépendant du temps.) (French) Zbl 0919.35099

Summary: We study the scattering theory for a time dependent \(2\times 2\) matricial Klein-Gordon operator, of the type: \[ P= (\sqrt{1- h^2\Delta_x}){\mathbf I}_2+ V(t,x)+ hR(t,x) \] on \(L^2(\mathbb{R}^n)\oplus L^2(\mathbb{R}^n)\), where \(V(t, x)\) is a real diagonal matrix, the eigenvalues of which are never equal when \((t,x)\) varies in \(\mathbb{R}^{n+ 1}\). One also assumes that \(V\) and \(R\) extend holomorphically in a complex strip around \(\mathbb{R}^{n+ 1}\), and satisfy to some decay properties at infinity. Then, denoting \(S= (S_{i,j})_{1\leq i,j\leq 2}\) the scattering operator associated to \(P\), we show that its off-diagonal coefficients \(S_{1,2}\) and \(S_{2,1}\) have an exponentially small norm as \(h\) tends to \(0_+\). More precisely, we obtain an estimate of the type \({\mathcal O}(e^{-\Sigma/h})\), where \(\Sigma>0\) is a constant which is explicitely related to the behaviour of \(V(t, x)\) in the complex domain.

MSC:

35P25 Scattering theory for PDEs
81U05 \(2\)-body potential quantum scattering theory

References:

[1] BAKLOUTI (H.) . - Asympotique des largeurs de résonances pour un modèle d’effet tunnel microlocal , Thèse Université Paris 13, 1995 .
[2] GÉRARD (C.) . - The Mourre Estimate for Regular Dispersive Systems , Preprint École Polytechnique de Palaiseau, 1990 . · Zbl 0724.35083
[3] GÉRARD (C.) , MARTINEZ (A.) , SJÖSTRAND (J.) . - A Mathematical Approach to the Effective Hamiltonian in Perturbed Periodic Problems , Comm. Math. Phys., t. 142, n^\circ 2, 1991 . Article | MR 93a:47079 | Zbl 0753.35057 · Zbl 0753.35057 · doi:10.1007/BF02102061
[4] HELFFER (B.) , SJÖSTRAND (J.) . - On diamagnetism and de Haas-van Alphen effect , Ann. Inst. H. Poincaré, t. 52, n^\circ 4, 1990 . Numdam | MR 92a:81237 | Zbl 0715.35070 · Zbl 0715.35070
[5] HOWLAND (J.) . - Stationary scattering theory for time-dependant Hamiltonians , Math. Ann., t. 207, 1974 . MR 49 #11284 | Zbl 0261.35067 · Zbl 0261.35067 · doi:10.1007/BF01351346
[6] KLEIN (M.) , MARTINEZ (A.) , WANG (X.P.) . - On the Born-Oppen-heimer Approximation of Wave Operators , Comm. Math. Phys., t. 152, 1993 . Article | MR 94e:81343 | Zbl 0778.35088 · Zbl 0778.35088 · doi:10.1007/BF02097058
[7] KLEIN (M.) , MARTINEZ (A.) , SEILER (R.) , WANG (X.P.) . - On the Born-Oppenheimer Expansion for Polyatomic Molecules , Comm. Math. Phys., t. 143, 1992 . Article | MR 93b:81069 | Zbl 0754.35099 · Zbl 0754.35099 · doi:10.1007/BF02099269
[8] MARTINEZ (A.) . - Precise Exponential Estimates in Adiabatic Theory , J. Math. Phys., t. 35 (8), 1994 , p. 3889-3915. MR 95e:81237 | Zbl 0808.47053 · Zbl 0808.47053 · doi:10.1063/1.530832
[9] NAKAMURA (S.) . - On an Example of Phase-Space Tunneling , Ann. Inst. H. Poincaré, t. 63, n^\circ 2, 1995 . Numdam | MR 96i:81288 | Zbl 0833.34088 · Zbl 0833.34088
[10] NAKAMURA (S.) . - On Martinez’Method of Phase Space Tunneling , Rev. Math. Phys., t. 7, n^\circ 3, 1995 , p. 431-441. MR 96b:81063 | Zbl 0842.35145 · Zbl 0842.35145 · doi:10.1142/S0129055X95000189
[11] REED (M.) , SIMON (B.) . - Methods of Modern Mathematical Physics , Academic Press, 1972 . MR 58 #12429a | Zbl 0242.46001 · Zbl 0242.46001
[12] ROBERT (D.) . - Autour de l’approximation semi-classique . - Birkhäuser, 1987 . MR 89g:81016 | Zbl 0621.35001 · Zbl 0621.35001
[13] SJÖSTRAND (J.) . - Singularités analytiques microlocales , Astérisque, t. 95, 1982 . MR 84m:58151 | Zbl 0524.35007 · Zbl 0524.35007
[14] SJÖSTRAND (J.) . - Geometric bounds on the density of resonances for semiclassical problems , Duke Mathematical Journal, t. 60 (1), 1990 , p. 1-57. Article | MR 91e:35166 | Zbl 0702.35188 · Zbl 0702.35188 · doi:10.1215/S0012-7094-90-06001-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.