×

zbMATH — the first resource for mathematics

Multidimensional conjugation operators and deformations of the classes \(Z(\omega^{(2)}; C(T^m))\). (English. Russian original) Zbl 0919.42011
Math. Notes 63, No. 6, 752-759 (1998); translation from Mat. Zametki 63, No. 6, 853-861 (1998).
The authors (the second of them disappears in the translated article) generalize the results of L. Cesari and I. Zhak on smoothness property of conjugate functions of two variables.

MSC:
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. V. Zhizhiashvili, ”Conjugate functions of variables,”Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],218, No. 3, 517–518 (1974).
[2] O. V. Besov, V. P. Il’in, and S. M. Nikol’skii,Integral Representations of Functions and Embedding Theorems [in Russian], Nauka, Moscow (1975).
[3] S. M. Nikol’skii, ”The Fourier series of a function with a given modulus of continuity,”Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],52, No. 3, 191–194 (1946).
[4] V. K. Dzyadyk,Introduction to the Theory of Uniform Approximation of Functions by Polynomials [in Russian], Nauka, Moscow (1977). · Zbl 0481.41001
[5] L. V. Zhizhiashvili, ”Some problems in the theory of simple and multiple trigonometric and orthogonal series,”Uspekhi Mat. Nauk [Russian Math. Surveys],28, No. 2, 65–119 (1973).
[6] L. V. Zhizhiashvili,Some Problems in Many-Dimensional Harmonic Analysis [in Russian], Izd. Tbilisskogo Univ., Tbilisi (1983). · Zbl 0577.42014
[7] L. V. Zhizhiashvili,Some Problems in the Theory of Trigonometric Fourier Series and Their Conjugates [in Russian], Izd. Tbilisskogo Univ., Tbilisi (1993).
[8] N. K. Bari,Trigonometric Series [in Russian], Moscow (1961).
[9] A. Zygmund, ”Smooth functions,”Duke Math. J.,12, 47–76 (1945). · Zbl 0060.13806 · doi:10.1215/S0012-7094-45-01206-3
[10] N. K. Bari, ”The best approximation by trigonometric polynomials of two conjugate functions,”Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.],19, No. 5, 285–302 (1955).
[11] N. K. Bari and S. B. Stechkin, ”Best approximations and differential properties of two conjugate functions,”Trudy Moskov. Mat. Obshch. [Trans. Moscow Math. Soc.],5, 484–522 (1956).
[12] L. Cesari, ”Sulle serie di Fourier delle funzioni lipschitziane di piu variabili,”Ann. Sci. École Norm. Sup. (2),7, 279–295 (1938). · Zbl 0019.20705
[13] I. E. Zhak, ”A Cesari theorem about conjugate functions of two variables,”Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],87, No. 6, 877–880 (1952).
[14] M. M. Lekishvili, ”Multidimensional conjugation operators and deformations of classes,”Soobshch. Akad. Nauk GSSR,135, No. 1, 57–59 (1989). · Zbl 0711.42017
[15] M. M. Lekishvili, ”Conjugate functions of several variables in the class Lip \(\alpha\),”Mat. Zametki [Math. Notes],23, No. 3, 361–372 (1978). · Zbl 0418.42009
[16] I. E. Zhak, ”A theorem of Zygmund about conjugate functions,”Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],97, No. 3, 387–389 (1954). · Zbl 0055.29703
[17] M. M. Lekishvili, ”Conjugate functions of several variables,”Soobshch. Akad. Nauk GSSR,94, No. 1, 21–23 (1979). · Zbl 0481.42014
[18] A. Zygmund,Trigonometric Series, Cambridge Univ. Press, Cambridge, Vol. 1 (1959), Vol. 2 (1960). · Zbl 0085.05601
[19] L. V. Zhizhiashvili, ”Integrability and continuity of conjugate functions of several variables,”Soobshch. Akad. Nauk GSSR,97, No. 1, 17–20 (1980). · Zbl 0433.42016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.