Egloff, Daniel Uniform Finsler Hadamard manifolds. (English) Zbl 0919.53020 Ann. Inst. Henri Poincaré, Phys. Théor. 66, No. 3, 323-357 (1997). Given a Finsler manifold \(M\), the fundamental tensor gives rise to a family of direction-dependent inner products on each tangent space. Each such inner product induces a norm on the tangent space in question. If the norms induced by these inner products are all equivalent to each other through a single constant which is usable for all tangent spaces, the Finsler manifold in question is said to be uniform. The present paper studies Finsler manifolds which are uniform, reversible (that is, absolutely homogeneous), simply connected, complete, and which have nonpositive flag curvature. It contains a careful discussion of the exponential map, asymptotic geodesics and the visual boundary, visibility and \(\delta\)-hyperbolicity, as well as Hilbert geometries. It proves that if the nonpositive flag curvature is uniformly bounded away from \(0\), then these uniform Finsler Hadamard manifolds are uniformly visible, and are hyperbolic in the sense of Gromov. Readers who plan to understand this subject in greater details may also want to consult the author’s dissertation. Reviewer: David Bao (Houston) Cited in 19 Documents MSC: 53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics) 53C22 Geodesics in global differential geometry 53B40 Local differential geometry of Finsler spaces and generalizations (areal metrics) Keywords:uniform Finsler manifold; nonpositive flag curvature; asymptotic geodesics; visual boundary; visibility; \(\delta\)-hyperbolicity; Hilbert geometries; Finsler Hadamard manifolds PDF BibTeX XML Cite \textit{D. Egloff}, Ann. Inst. Henri Poincaré, Phys. Théor. 66, No. 3, 323--357 (1997; Zbl 0919.53020) Full Text: Numdam EuDML OpenURL References: [1] M.T. Anderson and R. Schoen , Positive Harmonic Functions on Complete Manifolds of Negative Curvature , Annals of Math. , Vol. 121 , 1985 , pp. 429 - 461 . MR 794369 | Zbl 0587.53045 · Zbl 0587.53045 [2] P.L. Antonelli , R.S. Ingarden and M. Matsumoto , The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology , Kluver Academic Pub ., 1993 . MR 1273129 | Zbl 0821.53001 · Zbl 0821.53001 [3] G.S. Asanov , Finsler Geometry, Relativity and Gauge Theories , D. Reidel , 1985 . MR 827217 | Zbl 0576.53001 · Zbl 0576.53001 [4] L. Auslander , On Curvature in Finsler Geometry , Trans. Amer. Math. Soc. , Vol. 79 , 1955 , pp. 378 - 388 . MR 71833 | Zbl 0066.16202 · Zbl 0066.16202 [5] W. Ballmann , M. Gromov and V. Schroeder , Manifolds of Nonpositive Curvature , Progr. in Math. , Vol. 61 , Birkhäuser 1985 . MR 823981 | Zbl 0591.53001 · Zbl 0591.53001 [6] D. Bao and S.S. Chern , On a Notable Connection in Finsler Geometry , Houston J. of Math. Vol. 19 , No. 1 , 1993 , pp. 135 - 180 . MR 1218087 | Zbl 0787.53018 · Zbl 0787.53018 [7] Berestovkij V.N. and I.G. Nikolaev , Multidimensional Generalized Riemannian Spaces , Geometry IV , Encyclop. of Math. Sciences , Vol. 70 , Springer , 1993 . MR 1263965 | Zbl 0781.53049 · Zbl 0781.53049 [8] L. Berwald , Über die n-dimensionalen Geometrien konstanter Krümmung bei denen die Geraden die Kürzesten sind , Math. Zeitschr. , Vol. 30 , 1930 , pp. 449 - 469 . JFM 55.0405.14 · JFM 55.0405.14 [9] L. Berwald , Über Finslersche und Cartansche Geometrie I , Mathematica , Vol. 17 , 1941 , pp. 34 - 58 . MR 6491 | JFM 67.0673.02 · JFM 67.0673.02 [10] Yu.D. Burago , M. Gromov and G. Perelman , A. D. Alekandrov’s Space with Curvature bounded from below I , preprint. [11] H. Busemann , The Geometry of Geodesics , Academic Press , New York , 1955 . MR 75623 | Zbl 0112.37002 · Zbl 0112.37002 [12] H. Busemann , Intrinsic Area , Ann. Math. , Vol. 48 , 1947 , pp. 234 - 267 . MR 20626 | Zbl 0029.35301 · Zbl 0029.35301 [13] H. Busemann , Spaces with Non-Positive Curvature , Acta Math. , Vol. 80 , 1948 , pp. 259 - 310 . MR 29531 | Zbl 0038.10005 · Zbl 0038.10005 [14] H. Busemann , Recent Synthetic Differential Geometry , Ergeb. der Math. und ihrer Grenzgebiete , Vol. 54 , Springer , 1970 . MR 296877 | Zbl 0194.53701 · Zbl 0194.53701 [15] H. Busemann , Timelike Spaces , Dissert. Math , No. 53 , 1967 . MR 220238 | Zbl 0156.43201 · Zbl 0156.43201 [16] H. Busemann , Problem IV, Desarguesian Spaces; in Mathematical Developments arising from Hilbert Problems , Proc. Symp. in Pure Math , Vol. 28 , 1976 , pp. 131 - 141 MR 430935 | Zbl 0352.50010 · Zbl 0352.50010 [17] H. Busemann , Quasi-Hyperbolic Geometry , Rend. Circ. Matem. Palermo , Serie II, IV , 1955 , pp. 1 - 14 . [18] H. Busemann and W. Mayer , On the Foundations of Calculus of Variations , Trans. Amer. Math. Soc. , Vol. 49 , 1941 , pp. 173 - 198 . MR 3475 | Zbl 0024.41703 · Zbl 0024.41703 [19] H. Busemann and J.P. Kelly , Projective Geometry and Projective Metrics , Academic Press , New York , 1953 . MR 54980 | Zbl 0052.37305 · Zbl 0052.37305 [20] H. Busemann and B.B. Phadke , Spaces with Distinguished Geodesics , Monographs and Textbooks in Pure and Appl. Math. , No. 108 , 1987 . MR 896903 | Zbl 0631.53001 · Zbl 0631.53001 [21] H. Busemann and B.B. Phadke , Two Theorems on General Symmetric Spaces , Pacific J. of Math. , Vol. 92 , 1981 , pp. 39 - 48 . Article | MR 618044 | Zbl 0458.53031 · Zbl 0458.53031 [22] E. Cartan , Les espaces de Finsler , Actualités Scientifiques et Industrielles , No. 79 , Paris , Hermann , 1934 . Zbl 0008.41805 | JFM 60.0648.04 · Zbl 0008.41805 [23] P. Dazord , Propriétés globales des géodésiques des espaces de Finsler , Thèse No. 575 , Publ. Math. , Lyon , 1969 . [24] P. Eberlein , Geodesic Flow in certain Manifolds without Conjugate Points , Trans. Amer. Math. Soc. , Vol. 167 , 1972 , pp. 151 - 170 . MR 295387 | Zbl 0209.53304 · Zbl 0209.53304 [25] P. Eberlein and B. O’Neill , Visibility Manifolds , Pacific J. Math. , Vol. 46 , 1973 , pp. 45 - 109 . Article | MR 336648 | Zbl 0264.53026 · Zbl 0264.53026 [26] D. Egloff , Some New Developments in Finsler Geometry , Dissertation , Univ. Fribourg , 1995 . [27] D. Egloff , On the Dynamics of Uniform Finsler Manifolds of Negative Flag Curvature , Preprint, Univ. Fribourg , 1995 . MR 1448718 · Zbl 0884.53052 [28] D. Egloff , Hilbert Geometries , Preprint, Univ. Fribourg , 1996 . [29] P. Finsler , Über Kurven und Flächen in allgemeinen Räumen , Birkhäuser Verlag , Basel , 1951 . MR 42195 · Zbl 0044.37003 [30] P. Foulon , Géométrie des équations différentielles du second ordre , Ann. Inst. Henri Poincaré , Vol. 45 , No. 1 1986 , pp. 1 - 28 . Numdam | MR 856446 | Zbl 0624.58011 · Zbl 0624.58011 [31] P. Foulon , Réductibilité de systèmes dynamiques variationnels , Ann. Inst. Henri Poincaré , Vol. 45 , No. 4 , 1986 , pp. 359 - 388 . Numdam | MR 880743 | Zbl 0614.70017 · Zbl 0614.70017 [32] P. Foulon , Estimation de l’entropie des systèmes lagrangiens sans points conjugués , Ann. Inst. Henri Poincaré , Vol. 57 , No. 2 , 1992 , pp. 117 - 146 . Numdam | MR 1184886 | Zbl 0806.58029 · Zbl 0806.58029 [33] P. Foulon , Cours de troisième cycle , École Polytechnique Palaiseau , 1992 . · Zbl 0806.58029 [34] P. Funk , Über Geometrien bei denen die Geraden die Kürzesten sind , Math. Annalen , Vol. 101 , 1929 , pp. 226 - 237 . MR 1512527 | JFM 55.1043.01 · JFM 55.1043.01 [35] J. Grifone , Structure presque-tangente et connexions, I and II , Ann. Inst. Fourier , Vol. 22 , No. 1 , 1972 , pp. 287 - 334 , No. 3 , 1972 , pp. 291 - 338 . Numdam | MR 336636 | Zbl 0219.53032 · Zbl 0219.53032 [36] M. Gromov , J. Lafontaine and P. Pansu , Structure métriques pour les variétés Riemanniennes , Cedic/Fernand Nathan , Paris , 1981 . MR 682063 | Zbl 0509.53034 · Zbl 0509.53034 [37] E. Heintze and H.C. Im Hof , Geometry of Horospheres , J. Diff. Geom. , Vol. 12 , 1977 , pp. 481 - 491 . MR 512919 | Zbl 0434.53038 · Zbl 0434.53038 [38] E. Kann , Bonnet’s Theorem in two-dimensional G-Spaces , Comm. Pure Appl. Math. , Vol. 14 , 1961 , pp. 765 - 784 . MR 137081 | Zbl 0104.16801 · Zbl 0104.16801 [39] A.B. Katok , Ergodic Properties of Degenerate Integrable Hamiltonian Systems , Math. USSR-Izv. , Vol. 7 , 1973 , pp. 535 - 571 . Zbl 0316.58010 · Zbl 0316.58010 [40] P. Kelly and E.G. Straus , Curvature in Hilbert Geometry , Pacific J. Math. , Vol. 8 , 1958 , pp. 119 - 125 . Article | MR 96261 | Zbl 0081.16401 · Zbl 0081.16401 [41] W. Klingenberg , Geodätischer Fluss auf Mannigfaltikeiten vom hyperbolischen Typ , Invent. Math. , Vol. 14 , 1971 , pp. 63 - 82 . MR 296975 | Zbl 0219.53037 · Zbl 0219.53037 [42] F.P. Pedersen , On Space with Negative Curvature , Mat. Tidsskrift B , 1952 , pp. 66 - 89 . MR 55012 | Zbl 0048.40502 · Zbl 0048.40502 [43] S. Sternberg , Lectures on Differential Geometry , Prentice-Hall Inc ., 1964 . MR 193578 | Zbl 0129.13102 · Zbl 0129.13102 [44] W. Ziller , Geometry of the Katok Examples , Ergod. Th. and Dynam. Sys. , Vol. 3 , 1983 , pp. 135 - 157 . MR 743032 | Zbl 0559.58027 · Zbl 0559.58027 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.