zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Homoclinic and periodic orbits for Hamiltonian systems. (English) Zbl 0919.58026
Summary: This article deals with the existence of homoclinic and periodic solutions for second-order Hamiltonian systems. The main purpose is to consider unbounded potentials which do not satisfy the Ambrosetti-Rabinowitz condition. The method is variational and it combines a perturbation argument with Morse index estimates for minimax critical points.

MSC:
37J45Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods
37G99Local and nonlocal bifurcation theory
58E05Abstract critical point theory
WorldCat.org
Full Text: Numdam EuDML
References:
[1] A. Ambrosetti - P. Rabinowitz , Dual variational methods in critical point theory and applications , J. Funct. Anal. 14 ( 1973 ), 349 - 381 . MR 370183 | Zbl 0273.49063 · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[2] A. Ambrosetti - V. Coti-Zelati , Solutions with minimal period for Hamiltonian systems in a potential well , Ann. Inst. H. Poincaré Anal. Non Linéaire 3 ( 1987 ), 242 - 271 . Numdam | MR 898050 | Zbl 0623.58013 · Zbl 0623.58013 · numdam:AIHPC_1987__4_3_275_0 · eudml:78132
[3] V. Coti-Zelati - I. Ekeland - P.L. Lions , Index estimates and critical points offunctional not satisfying Palais Smale , Ann. Scuola Norm. Sup. Pisa, Cl. Sci . ( 4 ) 17 ( 1990 ), 569 - 581 . Numdam | MR 1093709 | Zbl 0725.58019 · Zbl 0725.58019 · numdam:ASNSP_1990_4_17_4_569_0 · eudml:84087
[4] H. Hofer , The topological degree at a critical point of mountain pass type , Proc. Sympos. Pure Math. 45 ( 1986 ), 501 - 509 . MR 843584 | Zbl 0608.58013 · Zbl 0608.58013
[5] P. Rabinowitz , Minimax Methods in Critical Point Theory with Applications to Differential Equations , CBMS Regional Conf. Ser. in Math., 65, Amer. Math. Soc. , Providence, RI , 1986 . MR 845785 | Zbl 0609.58002 · Zbl 0609.58002
[6] P. Rabinowitz , Homoclinic orbits for a class of Hamiltonian systems , Proc. Roy. Soc. Edinburgh Sect. A 114 ( 1990 ), 33 - 38 . MR 1051605 | Zbl 0705.34054 · Zbl 0705.34054 · doi:10.1017/S0308210500024240
[7] P. Rabinowitz , Critical point theory and applications to differential equations: a survey, in: ”Topological Nonlinear Analysis. Degree, Singularity and variations” , Matzeu and Vignoli Eds., Birkäuser , 1995 . MR 1322328 | Zbl 0823.58009 · Zbl 0823.58009
[8] S. Solimini , Morse index estimates in minimax theorems , Manuscripta Math. 63 ( 1989 ), 421 - 454 . Article | MR 991264 | Zbl 0685.58010 · Zbl 0685.58010 · doi:10.1007/BF01171757 · eudml:155390