zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A novel thermal model for the lattice Boltzmann method in incompressible limit. (English) Zbl 0919.76068
Summary: A novel lattice Boltzmann thermal model is proposed for studying thermohydrodynamics in incompressible limit. The new model introduces an internal energy density distribution function to simulate the temperature field. The macroscopic density and velocity fields are still simulated using the density distribution function. Compared with the multispeed thermal lattice Boltzmann models, the current scheme is numerically more stable. In addition, the new model can incorporate viscous heat dissipation and compression work done by the pressure, in contrast to the passive-scalar-based thermal lattice Boltzmann models. Numerical simulations of Couette flow with a temperature gradient and Rayleigh-Bénard convection agree well with analytical solutions and benchmark data.

MSC:
76M28Particle methods and lattice-gas methods (fluid mechanics)
76A02Foundations of fluid mechanics
80A20Heat and mass transfer, heat flow
82B20Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs
82-08Computational methods (statistical mechanics)
WorldCat.org
Full Text: DOI
References:
[1] Chen, S.; Doolen, G. D.: Lattice Boltzmann method for fluid flows. Ann. rev. Fluid mech. 30, 329 (1998)
[2] Martıńez, D. O.; Matthaeus, W. H.; Chen, S.; Montgomery, D. C.: Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics. Phys. fluids 6, 1285 (1994) · Zbl 0826.76069
[3] Hou, S.; Zou, Q.; Chen, S.; Doolen, G. D.; Cogley, A.: Simulation of cavity flow by the lattice Boltzmann method. J. comput. Phys. 118, 329 (1995) · Zbl 0821.76060
[4] He, X.; Luo, L. S.; Dembo, M.: Some progress in lattice Boltzmann method. I. nonuniform mesh grids. J. comput. Phys. 129, 357 (1996) · Zbl 0868.76068
[5] He, X.; Doolen, G. D.: Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder. J. comput. Phys. 134, 306 (1997) · Zbl 0886.76072
[6] Gunstensen, A. K.; Rothman, D. H.; Zaleski, S.; Zanetti, G.: Lattice Boltzmann model of immiscible fluids. Phys. rev. A 43, 4320 (1991)
[7] Shan, X.; Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. rev. E 47, 1815 (1993)
[8] Swift, M. R.; Osborn, W. R.; Yeomans, J. M.: Lattice Boltzmann simulation of nonideal fluids. Phys. rev. Lett. 75, 830 (1995)
[9] He, X.; Shan, X.; Doolen, G. D.: A discrete Boltzmann equation model for non-ideal gases. Phys. rev. E 57, R13 (1998)
[10] Ferreol, B.: Lattice--Boltzmann simulations of flow through fontainebleau sandstone. Transport in porous media 20, 3 (1995)
[11] Mcnamara, G.; Alder, B.: Analysis of the lattice Boltzmann treatment of hydrodynamics. Physica A 194, 218 (1993) · Zbl 0941.82527
[12] Alexander, F. J.; Chen, S.; Sterling, J. D.: Lattice Boltzmann thermohydrodynamics. Phys. rev. E 47, R2249 (1993)
[13] Chen, Y.; Ohashi, H.; Akiyama, M.: Thermal lattice Bhatnagar--Gross--Krook model without nonlinear deviations in macrodynamic equations. Phys. rev. E 50, 2776 (1994)
[14] Mcnamara, G.; Garcia, A. L.; Alder, B. J.: Stabilization of thermal lattice Boltzmann models. J. statist. Phys. 81, 395 (1995) · Zbl 1106.82353
[15] Pavlo, P.; Vahala, G.; Vahala, L.: Higher order isotropic velocity grids in lattice methods. Phys. rev. Lett. 80, 3960 (1998) · Zbl 0903.76080
[16] Pavlo, P.; Vahala, G.; Vahala, L.; Soe, M.: Linear-stability analysis of thermo-lattice Boltzmann models. J. comput. Phys. 139, 79 (1998) · Zbl 0903.76080
[17] Bartoloni, A.; Battista, C.; Cabasino, S.: LBE simulation of Rayleigh--Bénard convection on the APE100 parallel processor. Int. J. Mod. phys. C 4, 993 (1993)
[18] Shan, X.: Solution of Rayleigh--Bénard convection using a lattice Boltzmann method. Phys. rev. E 55, 2780 (1997)
[19] Eggels, J. G. M.; Somers, J. A.: Numerical simulation of free convective flow using the lattice Boltzmann scheme. J. heat fluid flow 16, 357 (1995)
[20] He, X.; Luo, L.: A priori derivation of the lattice Boltzmann equation. Phys. rev. E 55, R6333 (1997)
[21] Abe, T.: Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation. J. comput. Phys. 131, 241 (1997) · Zbl 0877.76062
[22] Bhatnagar, P. L.; Gross, E. P.; Krook, M.: A model for collision process in gases. I. small amplitude processes in charged and neutral one-component system. Phys. rev. 94, 511 (1954) · Zbl 0055.23609
[23] Cercignani, C.: The Boltzmann equation and its applications. Applied mathematical sciences 61 (1988) · Zbl 0646.76001
[24] Sterling, J. D.; Chen, S.: Stability analysis of lattice Boltzmann methods. J. comput. Phys. 123, 196 (1996) · Zbl 0840.76078
[25] Cao, N.; Chen, S.; Jin, S.; Martıńez, D.: Physical symmetry and lattice symmetry in the lattice Boltzmann method. Phys. rev. E 55, R21 (1997)
[26] Zou, Q.; He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. fluids 9, 1591 (1997) · Zbl 1185.76873
[27] Grad, H.: On the kinetic theory of rarefied gases. Commun. pure appl. Math. 2, 331 (1949) · Zbl 0037.13104
[28] Busse, F. H.: Transition to turbulence in Rayleigh--Bénard convection. Hydrodynamic instability and the transition to turbulence (1986)
[29] Reid, W. H.; Harris, D. L.: Some further results on the Bénard problem. Phys. fluids 1, 102 (1958)
[30] Clever, R. M.; Busse, F. H.: Transition to time-dependent convection. J. fluid mech. 65, 625 (1974) · Zbl 0291.76019
[31] He, X.; Luo, L.; Dembo, M.: Some progress in lattice Boltzmann method: Reynolds number enhancement in simulations. Physica A 239, 276 (1997)
[32] He, X.; Luo, L.: Lattice Boltzmann model for the incompressible Navier--Stokes equation. J. statist. Phys. 88, 927 (1997) · Zbl 0939.82042