zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On measuring and correcting the effects of data mining and model selection. (English) Zbl 0920.62056
Summary: In the theory of linear models, the concept of degrees of freedom plays an important role. This concept is often used for measurement of model complexity, for obtaining an unbiased estimate of the error variance, and for comparison of different models. I have developed a concept of generalized degrees of freedom (GDF) that is applicable to complex modeling procedures. The definition in based on the sum of the sensitivity of each fitted value to perturbation in the corresponding observed value. The concept is nonasymptotic in nature and does not require analytic knowledge of the modeling procedures. The concept of GDF offers a unified framework under which complex and highly irregular modeling procedures can be analyzed in the same way as classical linear models. By using this framework, many difficult problems can be solved easily. For example, one can now measure the number of observations used in a variable selection process. Different modeling procedures, such as a tree-based regression and a projection regression, can be compared on the basis of their residual sums of squares and the GDF that they cost. I apply the proposed framework to measure the effect of variable selection in linear models, leading to corrections of selection bias in various goodness-of-fit statistics. The theory also has interesting implications for the effect of general model searching by a human modeler.

MSC:
62G07Density estimation
62H12Multivariate estimation
62J05Linear regression
Software:
R; S-PLUS
WorldCat.org
Full Text: DOI