zbMATH — the first resource for mathematics

Numerical simulation of a thermoacoustic refrigerator. II: Stratified flow around the stack. (English) Zbl 0920.76061
Summary: The unsteady, two-dimensional, thermally stratified flow in the neighbourhood of an idealized thermoacoustic stack is analyzed using a low-Mach-number model that extends the adiabatic flow scheme developed in part I [the first two authors, ibid. 127, No. 2, 424-451, Art. No. 0185 (1996; Zbl 0862.76057)]. The extension consists in incorporation of numerical solvers for the energy equations in the fluid and the stack plates, and construction and implementation of fast Poisson solver for the velocity potential based on a domain decomposition/boundary Green’s function technique. The unsteady computations are used to predict the steady-state, acoustically generated temperature gradient across a two-dimensional couple and to analyze its dependence on the amplitude of the prevailing resonant wave. Computed results are compared to theoretical predictions and experimental data. \(\copyright\) Academic Press.

76M20 Finite difference methods applied to problems in fluid mechanics
76Q05 Hydro- and aero-acoustics
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI
[1] Rayleigh, Lord, Theory of sound, (1945) · JFM 25.1604.01
[2] Rott, N., The heating effect connected with non-linear oscillations in a resonance tube, J. appl. math. phys., 25, 619, (1974)
[3] Rott, N., Adv. appl. mech., 20, 135, (1980)
[4] Swift, G.W., J. acoust. soc. am., 84, 1145, (1988)
[5] Atchley, A.A.; Bass, H.E.; Hofler, T.J.; Lin, H.T., Study of a thermoacoustic prime mover below onset of self-oscillation, J. acoust. soc. am., 91, 734, (1992)
[6] Atchley, A.A.; Hofler, T.J.; Muzzerall, M.L.; Kite, M.D.; Ao, C., Acoustically generated temperature gradients in short plates, J. acoust. soc. am., 88, 251, (1990)
[7] Wheatley, J., Intrinsically irreversible or natural heat engines, Frontiers in physical acoustics, 435, (1986)
[8] Wheatley, J.; Hofler, T.; Swift, G.W.; Migliori, A., An intrinsically irreversible thermoacoustic engine, J. acoust. soc. am., 74, 153, (1983)
[9] Gaitan, D.F.; Atchley, A.A., Finite amplitude standing waves in harmonic and anharmonic tubes, J. acoust. soc. am., 93, 2232, (1993)
[10] Watanabe, M.; Prosperetti, A.; Yuan, H., A simplified model for linear and nonlinear thermoacoustic devices. part I: model and linear theory, J. acoust. soc. am., 102, 3484, (1997)
[11] A. S. Worlikar, O. M. Knio, R. Klein, Numerical simulation of a thermoacoustic refrigerator, Vortex Flows and Related Numerical Methods II, Y. GagnonG.-H. CottetA. F. GhoniemD. G. DritschelE. Meiburg, Kluwer Academic, Amsterdam, 1997, ESAIM Proceedings, 1, 1996, 363 · Zbl 0875.76566
[12] Cao, N.; Olson, J.R.; Swift, G.W.; Chen, S., Energy flux density in a thermoacoustic couple, J. acoust. soc. am., 99, 3456, (1996)
[13] A. S. Worlikar, O. M. Knio, R. Klein, Numerical study of the effective impedance of a thermoacoustic stack, J. Acoust. Soc. Am. · Zbl 0920.76061
[14] Worlikar, A.S.; Knio, O.M., Numerical simulation of a thermoacoustic refrigerator. part I: unsteady adiabatic flow around the stack, J. comput. phys., 127, 424, (1996) · Zbl 0862.76057
[15] Majda, A.; Sethian, J., The derivation and numerical solution of the equations for zero Mach number combustion, Combust. sci. technol., 42, 185, (1985)
[16] Ghoniem, A.F., Computational methods in turbulent reacting flow, Lectures in applied mathematics, 24, 199, (1985)
[17] Klein, R., Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics I: one dimensional flow, J. comput. phys., 121, 213, (1995) · Zbl 0842.76053
[18] Knio, O.M.; Worlikar, A.S.; Najm, H.N., Mixing and chemical reaction in an idealized swirl chamber, Twenty-sixth international symposium on combustion, 203, (1996)
[19] Fletcher, C.A.J., Computational techniques for fluid dynamics, (1987) · Zbl 0706.76001
[20] Hirsch, C., Numerical computation of internal and external flow, (1989)
[21] Merkli, P.; Thomann, H., Transition to turbulence in oscillating pipe flow, J. fluid mech., 68, 567, (1975)
[22] Panton, R.L., Incompressible flow, (1984) · Zbl 0623.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.