## Solving elliptic diophantine equations avoiding Thue equations and elliptic logarithms.(English)Zbl 0921.11076

The author solves the elliptic equation $y^2=(x+p)(x^2+p^2) \tag{1}$ in rational integers $$x,y$$ for the primes $$p=167, 223, 337, 1201$$. Up to now, elliptic equations have been solved by one of the following two methods: (a) reduce the equation to a finite number of Thue equations and solve the latter using lower bounds for linear forms in (ordinary) logarithms; this involves the computation of the fundamental units of certain number fields; or (b) reduce the equation to an inequality involving elliptic logarithms and solve the latter using lower bounds for linear forms in elliptic logarithms; for this one needs a basis of the Mordell-Weil group of the associated curve.
In the present paper the author applies a third method to (1), suggested to him by Yu. Bilu. Here he reduces (1) to a unit equation with four terms of the shape $\gamma \varepsilon^a-\overline{\gamma}\cdot\overline{\varepsilon}^{a} =\overline{\delta}\cdot\overline{\varepsilon}^{-a}-\delta\varepsilon^{-a} \tag{2}$ in the unknown $$a\in{\mathbb Z}$$, where $$\varepsilon$$ is the fundamental unit of a totally complex quartic field. Supposing $$| \varepsilon| >1$$ and $$a\geq 0$$, on dividing (2) by $$\overline{\gamma}\overline{\varepsilon}^a$$ and taking absolute values one obtains an inequality $$| \beta (\varepsilon /\overline{\varepsilon})^a-1| \ll | \varepsilon | ^{-2a}$$ and applying to this a lower bound for linear forms in logarithms one obtains an upper bound for $$a$$.

### MSC:

 11Y50 Computer solution of Diophantine equations 11D25 Cubic and quartic Diophantine equations

### Keywords:

elliptic diophantine equations; unit equation

ecdata
Full Text:

### References:

  Baker A., J. Reine Angew. Math. 442 pp 19– (1993)  Bilu Y., ”Solving superelliptic Diophantine equations by the method of Gelfond–Baker” (1994)  Cohen H., A course in computational algebraic number theory (1993) · Zbl 0786.11071  Cremona J. E., Algorithms for modular elliptic curves (1992) · Zbl 0758.14042  Ellison W. J., J. Number Theory 4 pp 107– (1972) · Zbl 0236.10010  Gebel J., Elliptic curves and related topics pp 61– (1994)  Gebel J., Acta Arith. 68 (2) pp 171– (1994)  Mignotte M., Math. Scand. 76 (1) pp 50– (1995)  DOI: 10.1017/CBO9780511661952  Schmitt S., Acta Arith. 78 (3) pp 241– (1997)  Smart N. P., Math. Proc. Cambridge Philos. Soc. 116 (3) pp 391– (1994) · Zbl 0817.11031  Stroeker R. J., Rocky Mountain J. Math. 24 (3) pp 1135– (1994) · Zbl 0810.11038  Stroeker R. J., Acta Arith. 67 (2) pp 177– (1994)  Stroeker R. J., Experiment. Math. 3 (3) pp 209– (1994) · Zbl 0824.11012  DOI: 10.1016/0022-314X(89)90014-0 · Zbl 0657.10014  de Weger B. M. M., J. Th. Nombres Bordeaux 9 (2) pp 281– (1997) · Zbl 0898.11009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.