zbMATH — the first resource for mathematics

Non-integrable aspects of the multi-frequency sine-Gordon model. (English) Zbl 0921.35148
Summary: We consider the two-dimensional quantum field theory of a scalar field self-interacting via two periodic terms of frequencies \(\alpha{}\) and \(\beta{}\). Looking at the theory as a perturbed sine-Gordon model, we use form factor perturbation theory to analyse the evolution of the spectrum of particle excitations. We show how, within this formalism, the non-locality of the perturbation with respect to the solitons is responsible for their confinement in the perturbed theory. The effects of the frequency ratio \(\alpha/\beta\) being a rational or irrational number and the occurrence of massless flows from the Gaussian to the Ising fixed point are also discussed. A generalisation of the Ashkin-Teller model and the massive Schwinger model are presented as examples of application of the formalism.

35Q53 KdV equations (Korteweg-de Vries equations)
81T10 Model quantum field theories
Full Text: DOI arXiv
[1] Coleman, S., Phys. rev. D, 11, 3424, (1975)
[2] Dashen, R.; Hasslacher, B.; Neveu, A., Phys. rev. D, 11, 3424, (1975)
[3] Zamolodchikov, A.B.; Zamolodchikov, A.B., Ann. phys., 120, 253, (1979)
[4] Korepin, V.E.; Faddev, L.D., Theor. mat. fiz., 25, 147, (1975)
[5] Karowski, M.; Weisz, P., Nucl. phys. B, 139, 445, (1978)
[6] Smimov, F.A., Form factors in completely integrable models of quantum field theory, (1992), World Scientific Singapore
[7] S. Lukyanov, Form factors of exponential fields in the sine-Gordon model, hep-th/9703190. · Zbl 0902.35099
[8] Koubek, A.; Mussardo, G., Phys. lett. B, 311, 193, (1993)
[9] Luther, A.; Peschel, I.; Luther, A., Phys. rev. B, Phys. rev. B, 14, 2153, (1976)
[10] McCall, S.; Hahn, E.L.; Lamb, G.L., Phys. rev., Rev. mod. phys., 43, 99, (1971)
[11] LeClair, A., Nucl. phys. B, 450, 753, (1995)
[12] Leggett, A.J.; Maki, K.; Kumar, P.; Maki, K.; Kumar, P., Rev. mod. phys., Phys. rev. B, Phys. rev. B, 14, 3920, (1976)
[13] Bullough, R.K.; Caudrey, P.J.; Gibbs, H.M., ()
[14] Scott, A.C.; Chu, F.Y.F.; McLaughlin, D.W., (), 1443
[15] Delfino, G.; Mussardo, G.; Simonetti, P., Nucl. phys. B, 473, 469, (1996)
[16] McCoy, B.M.; Wu, T.T., Phys. rev. D, 18, 1259, (1978)
[17] Zamolodchikov, Al.B., Nucl. phys. B, 348, 619, (1991)
[18] Yurov, V.P.; Zamolodchikov, Al.B., Int. J. mod. phys. A, 6, 3419, (1991)
[19] Zamolodchikov, A.B., JETP lett., 43, 730, (1986)
[20] Friedan, D.; Qiu, Z.; Shenker, S., Phys. rev. lett., 52, 1575, (1984)
[21] Kadanoff, L.P., Ann. phys., 120, 39, (1979)
[22] Kadanoff, L.P.; Brown, A.C., Ann. phys., 121, 318, (1979)
[23] A. Leclair, A.W.W. Ludwig and G. Mussardo, Integrability of coupled conformal field theories, hepth/9707159. · Zbl 0947.81099
[24] Coleman, S.; Jackiw, R.; Susskind, L., Ann. phys., 93, 267, (1975)
[25] Coleman, S., Ann. phys., 101, 239, (1976)
[26] Schwinger, J., Phys. rev., 128, 2425, (1962)
[27] Lowenstein, J.; Swieca, A., Ann. phys., 68, 172, (1971)
[28] Campbell, D.K.; Peyrard, M.; Sodano, P., Physica D, 19, 163, (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.