Étude d’une fonction remarquable associée aux moyennes de convolution. (Study of a remarkable function associated to convolution averages.). (French) Zbl 0921.47003

Summary: In this article we study the generating series of alternating weights of a convolution-preserving average induced by diffusion. We prove that it is a meromorphic function, naturally associated to a particular compact operator. This function is equal to \(d(-z)/d(z)\), whenever the Fredholm determinant \(d(z)\) of this operator exists, and we precise it in other cases.


47A10 Spectrum, resolvent
47G10 Integral operators
45B05 Fredholm integral equations
47A53 (Semi-) Fredholm operators; index theories
Full Text: DOI Numdam EuDML


[1] [1] -, Linear Operators, Part I: General Theory; Part II: Spectral Theory. New York: Interscience 1958, 1963. · Zbl 0084.10402
[2] GOHBERG, KREJN, Introduction à la théorie des opérateurs non auto-adjoints dans un espace hilbertien, Monographies universitaires de Mathématiques n° 39, Dunod.
[3] J. ECALLE, Well-behaved convolution averages and their application to real resummation, à paraître, première partie parue dans [5].
[4] J. ECALLE et F. MENOUS, Well-behaved convolution averages and the non-accumulation theorem for limit-cycles, Prépublication d’Orsay, 1995.0857.34009 · Zbl 0857.34009
[5] T. KATO, Pertubation theory for linear operators, Springer Verlag, 1966.0148.12601 · Zbl 0148.12601
[6] [6] , Les bonnes moyennes uniformisantes et leurs applications à la resommation réelle, Thèse, Paris XI Orsay, 1996. · Zbl 0972.40001
[7] F. SMITHIES, Integral equations, Cambridge University Press, 1970. · Zbl 0082.31901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.