zbMATH — the first resource for mathematics

Well-posedness in Sobolev spaces of the full water wave problem in 3D. (English) Zbl 0921.76017
Summary: We consider the motion of the interface of a three-dimensional inviscid, incompressible, irrotational water wave, with air region above water region and zero surface tension. We prove that the motion of the interface of water wave is not subject to Taylor instability, as long as the interface separates the whole three-dimensional space into two simply connected \(C^{2}\) regions. We prove further the existence and uniqueness of solutions of the full three-dimensional water wave problem, locally in time, for any initial interface that separates the whole three-dimensional space into two simply connected regions.

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35Q35 PDEs in connection with fluid mechanics
35R35 Free boundary problems for PDEs
Full Text: DOI
[1] J. Thomas Beale, Thomas Y. Hou, and John S. Lowengrub, Growth rates for the linearized motion of fluid interfaces away from equilibrium, Comm. Pure Appl. Math. 46 (1993), no. 9, 1269 – 1301. · Zbl 0796.76041
[2] F. Brackx, Richard Delanghe, and F. Sommen, Clifford analysis, Research Notes in Mathematics, vol. 76, Pitman (Advanced Publishing Program), Boston, MA, 1982. · Zbl 0529.30001
[3] R. E. Caflisch, Mathematical Analysis of Vortex Dynamics, Mathematical Aspects of Vortex Dynamics, edited by R. E. Caflisch, Philadelphia : Society for Industrial and Applied Mathematics 1988. CMP 21:14 · Zbl 0674.76012
[4] R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur \?² pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361 – 387 (French). · Zbl 0497.42012
[5] R. R. Coifman, G. David, and Y. Meyer, La solution des conjecture de Calderón, Adv. in Math. 48 (1983), no. 2, 144 – 148 (French). · Zbl 0518.42024
[6] Walter Craig, An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits, Comm. Partial Differential Equations 10 (1985), no. 8, 787 – 1003. · Zbl 0577.76030
[7] Gerald B. Folland, Introduction to partial differential equations, Princeton University Press, Princeton, N.J., 1976. Preliminary informal notes of university courses and seminars in mathematics; Mathematical Notes. · Zbl 0325.35001
[8] Garrett Birkhoff, Helmholtz and Taylor instability, Proc. Sympos. Appl. Math., Vol. XIII, American Mathematical Society, Providence, R.I., 1962, pp. 55 – 76.
[9] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. · Zbl 0562.35001
[10] John E. Gilbert and Margaret A. M. Murray, Clifford algebras and Dirac operators in harmonic analysis, Cambridge Studies in Advanced Mathematics, vol. 26, Cambridge University Press, Cambridge, 1991. · Zbl 0733.43001
[11] Thomas Y. Hou, Zhen-huan Teng, and Pingwen Zhang, Well-posedness of linearized motion for 3-D water waves far from equilibrium, Comm. Partial Differential Equations 21 (1996), no. 9-10, 1551 – 1585. · Zbl 0874.76014
[12] Tadayoshi Kano and Takaaki Nishida, Sur les ondes de surface de l’eau avec une justification mathématique des équations des ondes en eau peu profonde, J. Math. Kyoto Univ. 19 (1979), no. 2, 335 – 370 (French). · Zbl 0419.76013
[13] Carlos E. Kenig, Elliptic boundary value problems on Lipschitz domains, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 131 – 183.
[14] Carlos E. Kenig, Harmonic analysis techniques for second order elliptic boundary value problems, CBMS Regional Conference Series in Mathematics, vol. 83, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1994. · Zbl 0812.35001
[15] Marius Mitrea, Clifford wavelets, singular integrals, and Hardy spaces, Lecture Notes in Mathematics, vol. 1575, Springer-Verlag, Berlin, 1994. · Zbl 0822.42018
[16] Sigeru Mizohata, The theory of partial differential equations, Cambridge University Press, New York, 1973. Translated from the Japanese by Katsumi Miyahara. · Zbl 0263.35001
[17] Margaret A. M. Murray, The Cauchy integral, Calderón commutators, and conjugations of singular integrals in \?\(^{n}\), Trans. Amer. Math. Soc. 289 (1985), no. 2, 497 – 518. · Zbl 0574.42012
[18] V. I. Nalimov, The Cauchy-Poisson problem, Dinamika Splošn. Sredy Vyp. 18 Dinamika Židkost. so Svobod. Granicami (1974), 104 – 210, 254 (Russian).
[19] Marvin Shinbrot, The initial value problem for surface waves under gravity. I. The simplest case, Indiana Univ. Math. J. 25 (1976), no. 3, 281 – 300. · Zbl 0329.76016
[20] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. · Zbl 0232.42007
[21] J. J. Stoker, Water waves: The mathematical theory with applications, Pure and Applied Mathematics, Vol. IV, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1957. · Zbl 0078.40805
[22] G. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes I., Proc. Roy. Soc. London A 201, 1950, 192-196. · Zbl 0038.12201
[23] Gregory Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains, J. Funct. Anal. 59 (1984), no. 3, 572 – 611. · Zbl 0589.31005
[24] Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math. 130 (1997), no. 1, 39 – 72. · Zbl 0892.76009
[25] Hideaki Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite depth, Publ. Res. Inst. Math. Sci. 18 (1982), no. 1, 49 – 96. · Zbl 0493.76018
[26] Устойчивост\(^{\приме}\) неустановившихся движений жидкости со свободной границей, ВО ”Наука”, Новосибирск, 1992 (Руссиан, щитх Енглиш анд Руссиан суммариес).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.