×

Fuzzy sets and decision analysis. (English) Zbl 0921.90007

Summary: This survey points out recent advances in multiple attribute decision making methods dealing with fuzzy or ill-defined information. Fuzzy MAUT as well as fuzzy outranking methods are reviewed. Aggregation procedures, choice problems and treatment of interactive attributes are covered. Trends in research and open problems are indicated.

MSC:

91B06 Decision theory

Software:

M-MACBETH
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aczél, J., On mean values, Bull. Amer. Math. Soc., 54, 392-400 (1948) · Zbl 0030.02702
[2] Aizerman, M. A., New problem in the general choice theory, Social Choice and Welfare, 2, 235-282 (1985) · Zbl 0583.90004
[3] Bana e. Costa, C. A.; Vansnick, J.-C., The MACBETH approach: general overview and applications, (Pardalos, P. M.; Siskos, Y.; Zapounidis, C., Advances in Multicriteria Analysis (1995), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht) · Zbl 0862.90083
[4] Banzhaf, J. F., Weighted voting doesn’t work: a mathematical analysis, Rutgers Law Rev., 19, 317-343 (1965)
[5] Bellman, R. E.; Zadeh, J. A., Decision-making in a fuzzy environment, Management Sci., 17, 141-164 (1970) · Zbl 0224.90032
[6] Berge, C., Nouvelles extensions du noyau d’un graphe et ses applications en théorie des jeux, Publications Econométriques, VI, 1 (1973) · Zbl 0257.05113
[7] Bouyssou, D., Les relations de surclassement ont-elles des propriétés remarquables, (document DR93032 (1993), ESSEC: ESSEC Cergy, France)
[8] Bisdorff, R.; Roubens, M., On defining kernels on L-fuzzy binary relations, (Proc. IPMU’96. Proc. IPMU’96, Granada, Spain (1996))
[9] Brans, J. P.; Vincke, Ph., A preference ranking organization method, Management Sci., 31, 647-656 (1985) · Zbl 0609.90073
[10] Charnes, A.; Golany, B.; Keane, M.; Rousseau, J., Extremal principle solutions of games in characteristic function form: Core, Chebychev and Shapley value generalizations, (Report CCS 526 (1985), The Center for Cybernetic Studies, University of Texas: The Center for Cybernetic Studies, University of Texas Austin) · Zbl 0631.90095
[11] Delgado, M.; Verdegay, J. L.; Vila, M. A., On aggregation operations of Linguistic Labels, Internat. J. Intelligent Systems, 8, 351-370 (1993) · Zbl 0794.68154
[12] Delgado, M.; Verdegay, J. L.; Vila, M. A., Linguistic decision making models, Internat. J. Intelligent Systems, 7, 479-492 (1992) · Zbl 0756.90001
[13] Dubois, D.; Koenig, J. L., Social Choice axioms for fuzzy set aggregation, Fuzzy Sets and Systems, 43, 257-274 (1991) · Zbl 0742.90004
[14] Dubois, D.; Prade, H., Criteria aggregation and ranking of alternatives in the framework of fuzzy set theory, (Zimmermann, H.-J.; Zadeh, L. A.; Gaines, B., Fuzzy Sets and Decision Making. Fuzzy Sets and Decision Making, TIMS Studies in Management Sciences, vol. 20 (1984), North-Holland: North-Holland Amsterdam), 209-240
[15] Dubois, D.; Prade, H., Weighted minimum and maximum in fuzzy set theory, Inform. Sci., 39, 205-210 (1986) · Zbl 0605.03021
[16] Fishburn, P. C., Condorcet social choice functions, SIAM J. Appl. Math., 33, 469-489 (1977) · Zbl 0369.90002
[17] Fodor, J. C.; Roubens, M., Fuzzy Preference Modelling and Multicriteria Decision Support (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0827.90002
[18] Grabisch, M.; Nguyen, H. T.; Walker, E. A., Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference (1995), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht
[19] Grabisch, M., \(k\)-Order Additive Discrete Fuzzy Measures, (Proceedings of IPMU’96. Proceedings of IPMU’96, Granada, Spain (1996)) · Zbl 0927.28014
[20] Hammer, P. L.; Holzman, R., Approximations of pseudo-Boolean functions; applications to game theory, ZOR —; Methods and Models of Operations Research, 36, 3-21 (1992) · Zbl 0778.41009
[21] Herrera, F.; Verdegay, J. L., Linguistic assessments in group decision, (Proc. 1st European Congress on Fuzzy and Intelligent Technologies, EUFIT 1. Proc. 1st European Congress on Fuzzy and Intelligent Technologies, EUFIT 1, Aachen (1993)), 941-948
[22] Kandel, A.; Byatt, W. J., Fuzzy sets, fuzzy algebra, and fuzzy statistics, (Proc. IEEE, 66 (1978)), 1619-1639
[23] Kitainik, L., Fuzzy Decision Procedures with Binary Relation (1993), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht
[24] Miller, N. R., A new solution set for tournaments and majority voting: further graph-theoretical approaches to the theory of voting, Amer. J. Polit. Sci., 24, 68-96 (1980)
[25] Moulin, H., Choosing from a tournament, Soc. Choice Welfare, 3, 271-291 (1986) · Zbl 0618.90004
[26] Mudri, L.; Perny, P., An approach to design support using fuzzy models of architectural objects, (Gero, J. S.; Sudweeks, F., Artificial Intelligence in Design’94 (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 697-714
[27] Perny, P.; Roy, B., The use of fuzzy outranking relations in preference modelling, Fuzzy Sets and Systems, 49, 33-53 (1992) · Zbl 0765.90003
[28] Roberts, F. S., Measurement Theory with Applications to Decision-making, Utility and the Social Sciences (1979), Addison-Wesley: Addison-Wesley Reading, MA
[29] Ovchinnikov, S.; Roubens, M., On fuzzy strict preference, indifference and incomparablility relations, Fuzzy Sets and Systems, 49, 15-20 (1992) · Zbl 0768.90005
[30] Roubens, M., Choice procedures in fuzzy multicriteria decision analysis based on pairwise comparisons, Fuzzy Sets and Systems, 84, 135-142 (1996) · Zbl 0908.90005
[31] Orlovski, S. A., Decision-making with a fuzzy preference relation, Fuzzy Sets and Systems, 1, 155-167 (1978) · Zbl 0396.90004
[32] Roth, A. E., Subsolutions and the supercore of cooperatives games, Math. Oper. Res., 1, 1, 43-49 (1976) · Zbl 0457.90095
[33] Roy, B., Un algorithme de classements fondé sur une representation floue des preferences en presence de critères multiples, Cahiers du Centre d’Etudes de Recherche Opérationnelle, Bruxelles, 20, 2-24 (1978) · Zbl 0377.90003
[34] Saaty, T. L., The Analytic Hierarchy Process (1980), McGraw-Hill: McGraw-Hill New York · Zbl 1176.90315
[35] Schwartz, T., The Logic of Collective Choice (1986), Columbia University Press: Columbia University Press New York
[36] Shapley, L. S., A value for a-person games, (Kuhn, H. W.; Tucker, A. W., Contributions to the Theory of Games, vol. II, Annals of Mathematics Studies (1953), Princeton Univ. Press: Princeton Univ. Press Princeton), 307-317 · Zbl 0050.14404
[37] Van Hentenryck, P.; Simonis, H., Solving large combinatorial problem in logic programming, J. Logic Programming, 8, 75-93 (1990) · Zbl 0719.68013
[38] von Neumann, J.; Morgenstern, O., Theory of Games and Economic Behavior (1953), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0205.23401
[39] Yoneda, M.; Fukami, S.; Grabisch, M., Interactive determination of an utility function represented as a fuzzy integral, Lab. for Int. Fuzzy Engineering Research (LIFE), report TR-3A004-E (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.