×

zbMATH — the first resource for mathematics

Plactification. (English) Zbl 0922.05049
Summary: We study a map called plactification from reduced words to words. This map takes Coxeter-Knuth equivalence to Knuth equivalence, and has applications to the enumeration of reduced words, Schubert polynomials and certain Specht modules.

MSC:
05E10 Combinatorial aspects of representation theory
05E05 Symmetric functions and generalizations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Billey, S.; Jockusch, W.; Stanley, R. P., Some combinatorial properties of Schubert polynomials, J. Alg. Combin., 2, 345-374, (1993) · Zbl 0790.05093
[2] Edelman, P. H.; Greene, C., Balanced tableaux, Adv. Math., 63, 42-99, (1987) · Zbl 0616.05005
[3] Hanlon, P.; Sundaram, S., On a Bijection between Littlewood-Richardson Fillings of Conjugate Shape, J. Comb. Th. Ser. A, 60, 1-18, (1992) · Zbl 0769.05099
[4] G.D. James, The Representation Theory of Symmetric Groups, Springer Lecture Notes in Math, Vol. 682, Springer-Verlag 1978.
[5] James, G. D.; Peel, M. H., Specht series for skew representations of symmetric groups, J. Algebra, 56, 343-364, (1979) · Zbl 0398.20016
[6] Knuth, D. E., Permutations, matrices, and generalized Young tableaux, Pac. J. Math, 34, 709-727, (1970) · Zbl 0199.31901
[7] W. Kraśkiewicz and P. Pragacz, “Schubert functors and Schubert polynomials,” unpublished preprint.
[8] A. Lascoux, Personal communication.
[9] A. Lascoux and M.-P. Schützenberger, “Structure de Hopf de l”anneau de cohomologie et de l’anneau de Grothendieck d’une varieté drapeaux,” C. R. Acad. Sci. Paris Ser. I Math.295 (1982), 629-633. · Zbl 0542.14030
[10] A. Lascoux and M.-P. Schützenberger, “Le monoide plaxique, (Proc. Colloqu. Naples 1978),” Quad. Ricerca Sci.109 (1981). · Zbl 0517.20036
[11] A. Lascoux and M.-P. Schützenberger, “Polynômes de Schubert,” C. R. Acad. Sci. Paris294 (1982), 447-50.
[12] A. Lascoux and M.-P. Schützenberger, “Keys and standard bases,” Tableaux and Invariant Theory, IMA Volumes in Math and its Applications (D. Stanton, Ed.), Vol. 19, pp. 125-144, 1990. · Zbl 0815.20013
[13] Lascoux, A.; Schützenberger, M.-P., Tableaux and non-commutative Schubert polynomials, Func. Anal. Appl., 23, 63-64, (1989)
[14] I.G. Macdonald, Notes on Schubert polynomials, LACIM, Montréal, 1991.
[15] P. Magyar, “A Borel-Weil construction for Schur modules,” preprint, 1994.
[16] V. Reiner and M. Shimozono, “Key polynomials and a flagged Littlewood-Richardson rule,” to appear in J. Comb. Th. Ser. A. 70 (1995), 107-143. · Zbl 0819.05058
[17] V. Reiner and M. Shimozono, “Specht series for column convex diagrams,” to appear in J. Alg. · Zbl 0835.20021
[18] B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Wadsworth & Brooks/Cole, Pacific Grove, 1991. · Zbl 0823.05061
[19] Stanley, R. P., On the number of reduced decompositions of elements of Coxeter groups, Eur. J. Comb., 5, 359-372, (1984) · Zbl 0587.20002
[20] D. White, personal communication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.