×

On the modular curve \(X_{\text{ndép}}(11)\). (Sur la courbe modulaire \(X_{\text{ndép}}(11)\).) (French) Zbl 0922.11047

If \(p \geq 5\) is a prime number, the modular curves \(X_{\text{dép}}(p) = X_{\text{split}}(p)\) and \(X_{\text{ndép}}(p) = X_{\text{nonsplit}}(p)\) classify elliptic curves \(E\) such that the Galois action on \(E[p]\) factors through the normaliser of a split (resp. non-split) Cartan subgroup of \(\text{GL}_2({\mathbb F}_p)\). The paper under review is mainly concerned with the curve \(X_{\text{nonsplit}}(11)\). It was known before [G. Ligozat, Modular functions of one variable, Lect. Notes Math. 601, 149-237 (1977; Zbl 0357.14006)] that this curve is an elliptic curve isomorphic over \(\mathbb Q\) to the curve \[ {\mathcal E} : y^2 + y = x^3 - x^2 - 7x + 10. \] The author makes this isomorphism explicit and proceeds to find explicitly the rational function on \({\mathcal E}\) giving the \(j\)-invariant. This in turn leads to two explicit examples of pairs \((E, E')\) of non-isogenous elliptic curves over \(\mathbb Q\) with symplectically isomorphic mod 11 Galois representations.
In an appendix, it is shown that the curve \(X_{\text{split}}(37)\) has no extra rational points (i.e., other than cusps and CM points). F. Momose [Compos. Math. 52, 115-137 (1984; Zbl 0574.14023)] had shown that there is at most one such point. The proof given here makes use of these results, together with knowledge on \(X_0(37)\) taken from B. Mazur and P. Swinnerton-Dyer [Invent. Math. 25, 1-61 (1974; Zbl 0281.14016)].

MSC:

11G05 Elliptic curves over global fields
11G18 Arithmetic aspects of modular and Shimura varieties
14H52 Elliptic curves

Software:

ecdata
PDFBibTeX XMLCite
Full Text: DOI EuDML EMIS

References:

[1] Cassou-Noguès P., Elliptic functions and rings of integers (1987) · Zbl 0621.12012
[2] Cremona J. E., Algorithms for modular elliptic curves (1992) · Zbl 0758.14042
[3] Deligne P., dans Modular functions of one variable (Antwerp, 1972) pp 143– (1973) · doi:10.1007/978-3-540-37855-6_4
[4] Halberstadt E., C. R. Acad. Sci. Pans Sér. I Math. 322 (4) pp 313– (1996)
[5] Kubert D., Math. Ann. 218 (2) pp 175– (1975) · doi:10.1007/BF01370818
[6] Lang S., Elliptic functions (1987) · doi:10.1007/978-1-4612-4752-4
[7] Ligozat G., Modular functions of one variable, V (Bonn, 1976) pp 149– (1977) · doi:10.1007/BFb0063948
[8] Mazur B., Invent. Math. 44 (2) pp 129– (1978) · Zbl 0386.14009 · doi:10.1007/BF01390348
[9] Mazur B., Invent. Math. 25 pp 1– (1974) · Zbl 0281.14016 · doi:10.1007/BF01389997
[10] Momose F., Compositio Math. 52 (1) pp 115– (1984)
[11] Serre J.-P., Invent. Math. 15 (4) pp 259– (1972) · Zbl 0235.14012 · doi:10.1007/BF01405086
[12] Serre J.-P., Lectures on the MordellWeil theorem (1989)
[13] Shimura G., Introduction to the arithmetic theory of automorphic functions (1971) · Zbl 0221.10029
[14] Silverman J. H., The arithmetic of elliptic curves (1986) · Zbl 0585.14026 · doi:10.1007/978-1-4757-1920-8
[15] Velu J., C. R. Acad. Sci. Paris Sér. A-B 273 pp A238– (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.