Almkvist, Gert Asymptotic formulas and generalized Dedekind sums. (English) Zbl 0922.11083 Exp. Math. 7, No. 4, 343-359 (1998). The author studies the numbers \(a(r,n)\) generated by the infinite product expansion \[ f(x)= \prod^\infty_{\nu= 1}(1- x^\nu)^{-\nu^r}= \sum^\infty_{n= 0}a(r,n) x^n. \] The number of plane partitions of \(n\) is \(a(1, n)\). An asymptotic formula for the coefficients \(a(r, n)\) can be obtained by applying the circle method, which requires a knowledge of the behavior of \(f(x)\) near its singularities at the points \(\exp(2\pi ih/k)\) on the unit circle. The author describes four different heuristic approaches for finding expressions for \(f(- t+ \exp(2\pi ih/k))\) for small positive \(t\).These expressions contain generalized Dedekind sums related to (but different from) those introduced half a century ago by the reviewer [T. M. Apostol, Duke Math. J. 17, 147-157 (1950; Zbl 0039.03801); Pac. J. Math. 2, 1-9 (1952; Zbl 0047.04502)]. There is also a connection with sums of Dedekind type introduced by the reviewer and T. Vu [J. Number Theory 14, 391-396 (1982; Zbl 0487.10012)]. Reviewer: Tom M.Apostol (Pasadena) Cited in 1 ReviewCited in 10 Documents MSC: 11P82 Analytic theory of partitions 11F20 Dedekind eta function, Dedekind sums Keywords:plane partitions; asymptotic formula; generalized Dedekind sums Citations:Zbl 0039.03801; Zbl 0047.04502; Zbl 0487.10012 × Cite Format Result Cite Review PDF Full Text: DOI Euclid EuDML EMIS Online Encyclopedia of Integer Sequences: a(n) is the number of partitions of n (the partition numbers). Number of planar partitions (or plane partitions) of n. Expansion of g.f. x/((1 - x)^2*(1 - x^3)). Expansion of 1 / Sum_{n=-oo..oo} x^(n^2). Number of overpartitions of n: an overpartition of n is an ordered sequence of nonincreasing integers that sum to n, where the first occurrence of each integer may be overlined. Expansion of Product_{k>=1} (1 - x^k)^(-k^2). Expansion of Product_{k>=1} (1 - x^k)^(-k^3). Expansion of Product_{k>=1} (1 - x^k)^(-k^4). Expansion of Product_{k>=1} (1 - x^k)^(-k^5). Expansion of Product_{k>=1} (1 - x^k)^(-k^6). G.f.: Product_{k>=1} (1 - x^k)^(-k^7). Expansion of Product_{k>=1} (1 - x^k)^(-k^8). Expansion of Product_{k>=1} (1 - x^k)^(-k^9). Number of triangular partitions of n of order 3. Number of triangular partitions of n of order 4. Number of triangular partitions of n of order 5. Decimal expansion of (negative of) Kinkelin constant. Continued fraction expansion of (negative of) Kinkelin constant. References: [1] Almkvist G., A tribute to Emil Grosswald: number theory and related analysis pp 21– (1993) · doi:10.1090/conm/143/00986 [2] Almkvist G., The Rademacher legacy to mathematics pp 211– (1994) · doi:10.1090/conm/166/01621 [3] Almkvist G., J. Number Theory 50 (2) pp 329– (1995) · Zbl 0823.11058 · doi:10.1006/jnth.1995.1027 [4] Andrews G. E., The theory of partitions, Encyclopedia of Mathematics and its Applications (1976) · Zbl 0371.10001 [5] Carlitz L., Math. Comp. 29 pp 67– (1975) · doi:10.1090/S0025-5718-1975-0366803-0 [6] Cheema M. S., Math. Comp. 26 pp 999– (1972) · doi:10.1090/S0025-5718-1972-0314756-0 [7] Dixmier J., Number theory I pp 9– (1990) [8] Dokshitzer T., The Rademacher legacy to mathematics (University Park, PA, 1992) pp 235– (1994) · doi:10.1090/conm/166/01629 [9] Dokshitzer T., Number theory pp 133– (1995) [10] Fee G., Math. Comp. 57 (196) pp 839– (1991) [11] Garvan F. G., Proc. London Math. Soc. (3) 66 (3) pp 449– (1993) · Zbl 0788.11044 · doi:10.1112/plms/s3-66.3.449 [12] Henrici P., Applied and computational complex analysis, 1: Power series, integration, conformal mapping, location of zeros (1974) · Zbl 0313.30001 [13] Kinkelin J., J. Reine und Angew. Math 57 pp 122– (1860) · ERAM 057.1509cj · doi:10.1515/crll.1860.57.122 [14] Knessl C., ”Asymptotic behaviour of high order differences of the plane partition function” (1990) [15] Mellin H., Anwendung einer allgemeinen Methode zur Herleitung asymptotisher Formeln (1923) · JFM 50.0636.02 [16] Milnor J., Enseign. Math. (2) 29 (3) pp 281– (1983) [17] Rademacher H., Math. Fiz. Lapok 40 pp 24– (1933) [18] Rademacher H., Dedekind sums (1972) [19] Serre J.-P., Cours d’arithmétique,, 2. ed. (1977) [20] Vardi I., SIAM J. Math. Anal. 19 (2) pp 493– (1988) · Zbl 0641.33003 · doi:10.1137/0519035 [21] Wright E. M., Quart. J. Math. 2 pp 177– (1931) · Zbl 0002.38202 · doi:10.1093/qmath/os-2.1.177 [22] Zagier D., Invent. Math. 83 (2) pp 285– (1986) · Zbl 0591.12014 · doi:10.1007/BF01388964 [23] Zucker I. J., J. Phys. A 8 pp 874– (1975) · Zbl 0305.10037 · doi:10.1088/0305-4470/8/6/006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.